In the post-genomic era, one of the important tasks is to identify protein complexes and functional modules from high-throughput protein-protein interaction data, so that we can systematically analyze and understand the molecular functions and biological processes of cells. Although a lot of functional module detection studies have been proposed, how to design correctly and efficiently functional modules detection algorithms is still a challenging and important scientific problem in computational biology. In this paper, we present a novel Network Hierarchy-Based method to detect functional modules in PPI networks (named NHB-FMD). NHB-FMD first constructs the hierarchy tree corresponding to the PPI network and then encodes the tree such that genetic algorithm is employed to obtain the hierarchy tree with Maximum Likelihood. After that functional module partitioning is performed based on it and the best partitioning is selected as the result. Experimental results in the real PPI networks have shown that the proposed algorithm not only significantly outperforms the state-of-the-art methods but also can detect protein modules more effectively and accurately.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2018.06.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!