In vitro plant regeneration systems have turned into invaluable tools to plant biotechnology. Despite being poorly understood, the molecular mechanisms underlying the control of both morphogenetic pathways, de novo organogenesis and somatic embryogenesis, have been supported by recent findings involving proteome-, metabolome-, and transcriptome-based profiles. Notwithstanding, the integration of molecular data with structural aspects has been an important strategy of study attempting to elucidate the basis of the cell competence acquisition to further follow commitment and determination to specific a particular in vitro regeneration pathway. In that sense, morpho-histological tools have allowed to recognize cellular markers and patterns of gene expression at cellular level and this way have collaborated in the identification of the cell types with high regenerative capacity. This chapter ties together up those fundamental and important microscopy techniques that help to elucidate that regeneration occurs, most of the time, from epidermis or subepidermal cells and from the procambial cells (pericycle and vascular parenchyma). Important findings are discussed toward ultrastructural differences observed in the nuclear organization among pluripotent and totipotent cells, implying that regeneration occurs from two cellular mechanisms based on cellular reprogramming or reactivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-8594-4_3 | DOI Listing |
BMC Vet Res
January 2025
Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, 1920 Dayton Ave, Ames, IA, 50010, USA.
Background: Mycobacterium bovis BCG is the human tuberculosis vaccine and is the oldest vaccine still in use today with over 4 billion people vaccinated since 1921. The BCG vaccine has also been investigated experimentally in cattle and wildlife by various routes including oral and parenteral. Thus far, oral vaccination studies of cattle have involved liquid BCG or liquid BCG incorporated into a lipid matrix.
View Article and Find Full Text PDFChem Biodivers
January 2025
Yunnan University, School of Chemical Science and Technologe, Cuihu Bei Road, Kunming, CHINA.
Kaurane-class diterpenoid alkaloids (DAs), an important group of C20-DAs, include mainly veatchine-, napelline-, anopterine- and tricalysiamide-type DAs and several types of DAs with novel skeletons discovered in recent years. To date, approximately 81 compounds belonging to this class of DAs have been isolated from plants in 5 families and 7 genera. Among them, Aconitum is the most important source of this class of DAs.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of General Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China; Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China. Electronic address:
Conventional cancer treatments often induce a sustained DNA damage response (DDR) in tumor cells, leading to therapy-induced senescence (TIS), characterized by permanent cell cycle arrest and resistance to apoptosis. These senescent cells secrete senescence-associated secretory phenotypes (SASP), which can promote tumor progression and create an immunosuppressive microenvironment. This study introduces a novel approach to enhance chemotherapy efficacy by using functionalized curcuma-derived extracellular vesicles (DR5-CNV/DOX) to target and eliminate senescent tumor cells and inhibit their SASP.
View Article and Find Full Text PDFBraz J Biol
January 2025
Universitas Airlangga, Faculty of Science and Technology, Department of Biology, Mulyorejo, Surabaya, Indonesia.
Inflammation-proliferation transition plays a key role in the successful healing of a common burn type, second-degree burn. Gynura procumbens in vitro adventitious root nanohydrogel is currently being studied for its immunomodulatory to improve reparative environment. Root production and nanohydrogel preparation was done respectively by in vitro propagation and emulsion/ solvent diffusion with carbomer as a polymer.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
Cyclin-dependent kinases 4 and 6 (CDK4/6) are crucial regulators of cell cycle progression and represent important therapeutic targets in breast cancer. This study employs a comprehensive computational approach to identify novel CDK4/6 inhibitors from marine natural products. We utilized structure-based virtual screening of the CMNPD database and MNP library, followed by rigorous filtering based on drug-likeness criteria, PAINS filter, ADME properties, and toxicity profiles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!