Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: This study examined Twitter for public health surveillance during a mass gathering in Canada with two objectives: to explore the feasibility of acquiring, categorizing and using geolocated Twitter data and to compare Twitter data against other data sources used for Pan Parapan American Games (P/PAG) surveillance.
Methods: Syndrome definitions were created using keyword categorization to extract posts from Twitter. Categories were developed iteratively for four relevant syndromes: respiratory, gastrointestinal, heat-related illness, and influenza-like illness (ILI). All data sources corresponded to the location of Toronto, Canada. Twitter data were acquired from a publicly available stream representing a 1% random sample of tweets from June 26 to September 10, 2015. Cross-correlation analyses of time series data were conducted between Twitter and comparator surveillance data sources: emergency department visits, telephone helpline calls, laboratory testing positivity rate, reportable disease data, and temperature.
Results: The frequency of daily tweets that were classified into syndromes was low, with the highest mean number of daily tweets being for ILI and respiratory syndromes (22.0 and 21.6, respectively) and the lowest, for the heat syndrome (4.1). Cross-correlation analyses of Twitter data demonstrated significant correlations for heat syndrome with two data sources: telephone helpline calls (r = 0.4) and temperature data (r = 0.5).
Conclusion: Using simple syndromes based on keyword classification of geolocated tweets, we found a correlation between tweets and two routine data sources for heat alerts, the only public health event detected during P/PAG. Further research is needed to understand the role for Twitter in surveillance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6964588 | PMC |
http://dx.doi.org/10.17269/s41997-018-0059-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!