A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative Analysis on Ex Vivo Nonlinear Microscopy Images of Basal Cell Carcinoma Samples in Comparison to Healthy Skin. | LitMetric

Basal cell carcinoma (BCC) is the most frequent malignant neoplasm in the Caucasian population. There are several therapeutic options for BCC, but surgical excision is considered gold standard treatment. As BCCs often have poorly defined borders, the clinical assessment of the tumor margins can be challenging. Therefore, there is an increasing demand for efficient in vivo imaging techniques for the evaluation of tumor borders prior to and during surgeries. In the near future, nonlinear microscopy techniques might meet this demand. We measured the two-photon excitation fluorescence (TPEF) signal of nicotinamide adenine dinucleotide hydride (NADH) and elastin and second harmonic generation (SHG) signal of collagen on 10 ex vivo healthy control and BCC skin samples and compared the images by different quantitative image analysis methods. These included integrated optical density (IOD) measurements on TPEF and SHG images and application of fast Fourier transform (FFT), CT-FIRE and CurveAlign algorithms on SHG images to evaluate the collagen structure. In the BCC samples, we found significantly lower IOD of both the TPEF and SHG signals and higher collagen orientation index utilizing FFT. CT-FIRE algorithm revealed increased collagen fiber length and decreased fiber angle while CurveAlign detected higher fiber alignment of collagen fibers in BCC. These results are in line with previous findings which describe pronounced changes in the collagen structure of BCC. In the future, these novel image analysis methods could be integrated in handheld nonlinear microscope systems, for sensitive and specific identification of BCC.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12253-018-0445-1DOI Listing

Publication Analysis

Top Keywords

nonlinear microscopy
8
basal cell
8
cell carcinoma
8
image analysis
8
analysis methods
8
tpef shg
8
shg images
8
fft ct-fire
8
collagen structure
8
structure bcc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!