Plants incorporate inorganic materials (biominerals), such as silica, into their various components. Plants belonging to the order Poales, like rice plants and turfgrasses, show comparatively high rates of silicon accumulation, mainly in the form of silica bodies. This work aims to determine the shapes and roles of these silica bodies by microscopic observation and optical simulation. We have previously found convex silica bodies on the leaves of rice plants and hot-season turfgrasses (adapted to hot-seasons). These silica bodies enabled light reflection and ensured reduction of the photonic density of states, which presumably prevented the leaves from overheating, as suggested by theoretical optical analyses. The silica bodies have been considered to have the functions of reinforcement of the plant body. The present work deals with cold-season turfgrasses, which were found to have markedly different silica bodies, cuboids with a concave top surface. They presumably acted as small windows for introducing light into the tissues, including the vascular bundles in the leaves. The area of the silica bodies was calculated to be about 5% of the total surface area of epidermis, which limits the thermal radiation of the silica bodies. We found that the light signal introduced through the silica bodies diffused in the organs even reaching the vascular bundles, the physiological functions of this phenomena remain as future problems. Light signal in this case is not related with energy which heat the plant but sensing outer circumstances to respond to them.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6035188PMC
http://dx.doi.org/10.1038/s41598-018-28159-6DOI Listing

Publication Analysis

Top Keywords

silica bodies
40
silica
11
bodies
10
cold-season turfgrasses
8
rice plants
8
vascular bundles
8
light signal
8
strategy optical
4
optical path
4
path daylight
4

Similar Publications

Heatstroke, a global concern exacerbated by climate change, poses significant health risks, potentially leading to multiorgan damage and fatalities. Core body temperature (CBT) is a critical and precise indicator of heatstroke, and its continuous monitoring could serve as a pivotal tool for early detection. Traditional CBT measurements, often invasive (e.

View Article and Find Full Text PDF

The synergistic bioactive effect of polyphenols can enhance the development of functional foods to prevent chronic diseases such as cancer. Curcumin and quercetin have been shown to possess anticancer properties. The combination of curcumin and quercetin has been shown to provide synergistic effects against cancer cell proliferation.

View Article and Find Full Text PDF

Mesothelioma is a lethal cancer of the serosal lining of the body cavities. Risk factors include environmental and genetic factors. Asbestos exposure is considered the principal environmental risk factor, but other carcinogenic mineral fibers, such as erionite, also have a causal role.

View Article and Find Full Text PDF

Isolation and Antioxidant Mechanism of Polyphenols from .

Antioxidants (Basel)

December 2024

Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.

, as an edible and medicinal macrofungus, represents a high source of polyphenols with considerable antioxidant activities. However, due to the significant differences in polyphenol content and bioactivity caused by different cultivation substrates, its antioxidant mechanism has not been fully determined. In this paper, five groups of fruiting bodies were collected from cultivation substrates from different areas.

View Article and Find Full Text PDF

Human breath gas analysis is a noninvasive disease diagnostic approach used to identify different pathological conditions in the human body. Monitoring breath acetone (CHO) and ammonia (NH) as biomarkers is vital in diagnosing diabetes mellitus and liver disorders, respectively. In this article, the quartz-enhanced photoacoustic spectroscopy (QEPAS) technique is proposed and demonstrated for measuring CHO and NH in human exhaled breath samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!