Metal-organic frameworks (MOFs) have so far been highlighted for their potential roles in catalysis, gas storage and separation. However, the realization of high electrical conductivity (>10 S cm) and magnetic ordering in MOFs will afford them new functions for spintronics, which remains relatively unexplored. Here, we demonstrate the synthesis of a two-dimensional MOF by solvothermal methods using perthiolated coronene as a ligand and planar iron-bis(dithiolene) as linkages enabling a full π-d conjugation. This 2D MOF exhibits a high electrical conductivity of ~10 S cm at 300 K, which decreases upon cooling, suggesting a typical semiconductor nature. Magnetization and Fe Mössbauer experiments reveal the evolution of ferromagnetism within nanoscale magnetic clusters below 20 K, thus evidencing exchange interactions between the intermediate spin S = 3/2 iron(III) centers via the delocalized π electrons. Our results illustrate that conjugated 2D MOFs have potential as ferromagnetic semiconductors for application in spintronics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6035257PMC
http://dx.doi.org/10.1038/s41467-018-05141-4DOI Listing

Publication Analysis

Top Keywords

high electrical
8
electrical conductivity
8
coronene-based semiconducting
4
semiconducting two-dimensional
4
two-dimensional metal-organic
4
metal-organic framework
4
framework ferromagnetic
4
ferromagnetic behavior
4
behavior metal-organic
4
metal-organic frameworks
4

Similar Publications

Modern-day applications demand onboard electricity generation that can be achieved using piezoelectric phenomena. Reducing the dimensionality of materials is a pathway to enhancing the piezoelectric properties. Transition-metal dichalcogenides have been shown to exhibit high piezoelectricity.

View Article and Find Full Text PDF

Recent advances in electrochemical sensing and remediation technologies for ciprofloxacin.

Environ Sci Pollut Res Int

January 2025

Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Ciprofloxacin (CIP) is an extensively used broad-spectrum, fluoroquinolone antibiotic used for treating diverse bacterial infections. Effluent treatment plants (ETPs) worldwide lack technologies to detect or remediate antibiotics. CIP reaches the aquatic phase primarily due to inappropriate disposal practices, lack of point-of-use sensing, and preloaded activated charcoal filter at ETPs.

View Article and Find Full Text PDF

Discovering electrocatalysts that can efficiently convert carbon dioxide (CO) to valuable fuels and feedstocks using excess renewable electricity is an emergent carbon-neutral technology. A single metal atom embedded in doped graphene, , single-atom catalyst (SAC), possesses high activity and selectivity for electrochemical CO reduction (COR) to CO, yet further reduction to hydrocarbons is challenging. Here, using density functional theory calculations, we investigate stability and reactivity of a broad SAC chemical space with various metal centers (3d transition metals) and dopants (2p dopants of B, N, O; 3p dopants of P, S) as electrocatalysts for COR to methane and methanol.

View Article and Find Full Text PDF

The search for new anode materials with high lithium-ion battery (LIB) capacity has attracted considerable attention due to the increasing need for electrical power. Here, we utilized first-principles calculations to develop a honeycomb-structured BCN monolayer, which exhibits an ultra-high Li-ion storage capacity of 2244 mA h g as an anode material for LIBs. Furthermore, the calculations show that the BCN monolayer has a comparatively small diffusion barrier of 0.

View Article and Find Full Text PDF

Unraveling the conversion mechanism toward spinel sulfides as cathode materials for Mg-ion batteries.

Phys Chem Chem Phys

January 2025

National Engineering Research Centre for Mg Alloys, Chongqing University, Chongqing 400044, PR China.

Rechargeable Mg batteries are promising candidates for achieving considerable high-energy-density. Enhancing the energy density can be achieved by integrating metallic Mg anodes with conversion-type cathode materials, which are characterized by multi-electron transfer process and elevated specific capacities in contrast to intercalation-type materials. Despite these advantages, the conversion-type cathodes still have some challenges of substantial volume expansion, sluggish diffusion kinetics and intricate mesophase evolution during repeated electrochemical reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!