Definitions and pathophysiology of vasoplegic shock.

Crit Care

Surrey Perioperative Anaesthetic Critical care collaborative group (SPACeR), Intensive Care, Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK.

Published: July 2018

Vasoplegia is the syndrome of pathological low systemic vascular resistance, the dominant clinical feature of which is reduced blood pressure in the presence of a normal or raised cardiac output. The vasoplegic syndrome is encountered in many clinical scenarios, including septic shock, post-cardiac bypass and after surgery, burns and trauma, but despite this, uniform clinical definitions are lacking, which renders translational research in this area challenging. We discuss the role of vasoplegia in these contexts and the criteria that are used to describe it are discussed. Intrinsic processes which may drive vasoplegia, such as nitric oxide, prostanoids, endothelin-1, hydrogen sulphide and reactive oxygen species production, are reviewed and potential for therapeutic intervention explored. Extrinsic drivers, including those mediated by glucocorticoid, catecholamine and vasopressin responsiveness of the blood vessels, are also discussed. The optimum balance between maintaining adequate systemic vascular resistance against the potentially deleterious effects of treatment with catecholamines is as yet unclear, but development of novel vasoactive agents may facilitate greater understanding of the role of the differing pathways in the development of vasoplegia. In turn, this may provide insights into the best way to care for patients with this common, multifactorial condition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6035427PMC
http://dx.doi.org/10.1186/s13054-018-2102-1DOI Listing

Publication Analysis

Top Keywords

systemic vascular
8
vascular resistance
8
definitions pathophysiology
4
pathophysiology vasoplegic
4
vasoplegic shock
4
vasoplegia
4
shock vasoplegia
4
vasoplegia syndrome
4
syndrome pathological
4
pathological low
4

Similar Publications

Cell-cell crosstalk in the pathogenesis of acute lung injury and acute respiratory distress syndrome.

Tissue Barriers

January 2025

Sepsis Translational Medicine Key Laboratory of Hunan Province, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, PR China.

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the result of an exaggerated inflammatory response triggered by a variety of pulmonary and systemic insults. The lung tissues are comprised of a variety of cell types, including alveolar epithelial cells, pulmonary vascular endothelial cells, macrophages, neutrophils, and others. There is mounting evidence that these diverse cell populations within the lung interact to regulate lung inflammation in response to both direct and indirect stimuli.

View Article and Find Full Text PDF

Designing dual-targeted nanomedicines to enhance tumor delivery efficacy is a complex challenge, largely due to the barrier posed by blood vessels during systemic delivery. Effective transport across endothelial cells is, therefore, a critical topic of study. Herein, we present a synthetic biology-based approach to engineer dual-targeted ferritin nanocages (Dt-FTn) for understanding receptor-mediated transport across tumor endothelial cells.

View Article and Find Full Text PDF

The management of multiple intracranial aneurysms presents significant clinical challenges, particularly when complicated by underlying conditions such as cerebral atherosclerosis. This case report highlights the successful treatment of a 66-year-old female diagnosed with three intracranial aneurysms located in the right middle cerebral artery (MCA), pericallosal artery, and M2 segment. The patient also had a history of systemic atherosclerosis and right-sided breast cancer, factors that increased the complexity of surgical intervention.

View Article and Find Full Text PDF

Venous thromboembolism (VTE), encompassing deep vein thrombosis and pulmonary embolism, is a significant burden on health and economic systems worldwide. Improved VTE management calls for the integration of biomarkers into diagnostic algorithms and scoring systems for risk assessment, possible complications, and mortality. This literature review discusses novel biomarkers with potential diagnostic and prognostic value in personalized VTE management.

View Article and Find Full Text PDF

Systemic-to-pulmonary collaterals (SPCs) are common in congenital heart disease (CHD). Particularly in single ventricle anatomy and Fontan circulation, SPC can both complicate the postoperative course and lead to clinical deterioration in the long term. The treatment of SPC is controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!