The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent nuclear receptor. It plays an important role in kidney physiology, where it might contribute to arterial blood pressure regulation and hypertension development by modulation of several signaling pathways. In our study we focused on the effect of PPARγ agonist pioglitazone on changes in the nitric oxide synthase (NOS) expression and activity, the renin-angiotensin system (RAS) cascade, and redox homeostasis signaling pathways in the renal cortex of young pre hypertensive rat models. Young (5-weeks old) spontaneously hypertensive (SHR) and borderline hypertensive (BHR) rats were treated by pioglitazone (PIO, 10 mg/kg/day) during 10 days. Blood pressure (BP) was determined by plethysmography method. Changes in lipid profile were detected in plasma with standard kits using biochemical analyser. Gene expression has been detected by qRT-PCR and protein level was determined using Western blot analysis. Superoxide dismutase (SOD) and catalase (CAT) activities were determined spectrophotometrically and the total enzyme activity of NOS was measured using a radioactive assay based on conversion of [H] L-arginine to [H] L- citrulline. Administration of pioglitazone decreased BP in BHR and slowed down the development of BP increase in young SHR animals. For NOS, activation by PPARγ correlated with increase in gene and protein expression of NOS isoforms and in total enzyme activity both in BHR and SHR. In the AT1R/Nox pathway, the treatment did not significantly influence mRNA expression of the p22phox subunit of NADPH oxidase (Nox) and AT1R, but up-regulated the 'pro-vasodilatatory' Mas and AT2R receptors in both BHR and SHR groups. Pioglitazone treatment affected redox regulation. Increase in gene expression of nuclear factor E2-related factor 2 (Nrf2) and SOD isoforms correlated with SOD and CAT enzyme activities. The group treatment-to-control ratios, BHR Pioglitazone to BHR control and SHR Pioglitazone to SHR control for gene expression increased by 10% to 230%. The largest effect of PPARγ has been observed in SOD1, SOD3 and the Mas receptor gene treatment-to-control ratios. The most prominent differences between BHR and SHR were observed in SOD1 and Mas receptor expressions, with large effects of opposite sign in BHR versus SHR. Our data indicate that an increase of NO release activates signaling in the renal cortex of pre-hypertensive rats after pioglitazone treatment. Improvement of NO availability, AT2R, Mas receptors and aberrant redox regulation is thought to be the major correlated mechanisms mediating the BP decrease affected by the PPARγ agonist treatment. We also observed that the most sensitive tissue responses to PPARγ-dependent activation of Nrf2 have been primarily found in the kidney of young hypertensive animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.26402/jpp.2018.2.09 | DOI Listing |
Small
January 2025
Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai, 200433, P. R. China.
The transient receptor potential (TRP) channel is a key sensor for diverse cellular stimuli, regulating the excitability of primary nociceptive neurons. Sensitization of the TRP channel can heighten pain sensitivity to innocuous or mildly noxious stimuli. Here, reversible modulation of TRP channels is achieved by controlling both the light-induced photoelectrochemical reaction to induce neuronal depolarization, and antioxidants for neuronal protection.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
Background: Current treatment strategies for hormone-dependent breast cancers, including adjuvant endocrine therapy, often fail due to persistence of breast cancer stem cells (brCSCs), which are significant contributors to tumor recurrence and treatment resistance. Therefore, gaining deeper insights into the molecular regulators driving breast cancer aggressiveness is important. Moreover, given the complexities and expenses involved in developing new pharmacological agents, the strategic repurposing of existing FDA-approved drugs to target these key molecular pathways presents a compelling approach for identifying novel therapeutic interventions aimed at mitigating tumor refractoriness.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
Hypoxia is a significant stressor, and stabilized hypoxia-inducible factor-1α (HIF-1α) regulates the expression of numerous genes, leading to various biochemical, molecular, physiological and genomic changes. The body's oxygen-sensing system activates gene expression to protect brain tissues from hypoxia. Gamma-aminobutyric acid, an inhibitory neurotransmitter, regulates brain excitability during hypoxia through the activation of HIF-1 α.
View Article and Find Full Text PDFMar Drugs
January 2025
College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
Chondroitin sulfate (CS), a class of glycosaminoglycans covalently attached to proteins to form proteoglycans, is widely distributed in the extracellular matrix and cell surface of animal tissues. In our previous study, CS was used as a template for the synthesis of seleno-chondroitin sulfate (SeCS) through the redox reaction of ascorbic acid (Vc) and sodium selenite (NaSeO) and we found that SeCS could inhibit tumor cell proliferation and invasion. However, its effect on angiogenesis and its underlying mechanism are unknown.
View Article and Find Full Text PDFMetabolites
January 2025
School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
: Sarcopenia, characterized by the progressive loss of muscle mass and strength, is linked to physical disability, metabolic dysfunction, and an increased risk of mortality. Exercise therapy is currently acknowledged as a viable approach for addressing sarcopenia. Nevertheless, the molecular mechanisms behind exercise training or physical activity remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!