To study the metabolic products of main compounds of Chuankezhi injection in rat, 12 Sprague Dawley rats were classed into 2 groups, a blank control group and an intermuscular administration group, respectively. Rat feces and urine samples were collected from 0−24 h and 24−48 h after administration. All the samples were ultrasonically treated with methanol and then analyzed using LC-LTQ Orbitrap MSn. By comparison with the total ion chromatogram of samples from the blank control group, the metabolites in the samples of drug-treated group were screened. These metabolites were further analyzed by multistage product ion scanning and comparison of retention time with reference substances. As a result, a total of 12 flavonoid metabolites were tentatively identified from the rat feces and no metabolite was discovered in the rat urine. Epimedin C and icariin were detected in the rat blood samples after 30 min of administration, but their metabolites and other original flavones were not detected. Furthermore, no original flavones and their metabolites were detected in rat blood samples after 2 and 4 h of administration. The potential metabolism paths were further characterized and the principal in vivo transformation of flavones from Chuankezhi injection were deglycosylation, dehydration, methylation, oxidation and isomerization in rats.
Download full-text PDF |
Source |
---|
Int J Chron Obstruct Pulmon Dis
June 2024
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China.
Objective: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease with high prevalence, morbidity, and mortality. Chuankezhi (CKZ) injection, a Chinese patent medicine, has been commonly used for treating COPD. This study evaluated the clinical efficacy of CKZ injections in COPD patients and explored potential underlying mechanisms by integrating meta-analysis and network pharmacology.
View Article and Find Full Text PDFBiomed Pharmacother
December 2022
Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China. Electronic address:
Background: Chuankezhi injection (CKZ) is a traditional Chinese medicine for the treatment of respiratory diseases and has been often used off-label as a nebulization therapy. However, little is known about the aerosolization performance and pulmonary fate of the inhaled CKZ. This study aimed to evaluate the aerodynamic characteristics of nebulizer generated aerosols and to compare the properties of pharmacokinetics, lung distribution and anti-inflammation effects of CKZ after intratracheal and intravenous administration.
View Article and Find Full Text PDFAnn Transl Med
June 2022
Department of Pediatrics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Evid Based Complement Alternat Med
November 2021
The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.
Introduction: Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) imposes a large burden on economy and society worldwide. In addition to western medicine, multiple kinds of qi-tonifying Chinese medicine injections have been widely used in China as adjunctive treatments. Previous small-sample clinical trials have proven their efficacy in the treatment of AECOPD.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
June 2021
Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!