The culturing of primary neurons represents a central pillar of neuroscience research. Primary neurons are derived directly from brain tissue and recapitulate key aspects of neuronal development in an in vitro setting. Unlike neural stem cells, primary neurons do not divide; thus, initial attachment of cells to a suitable substrate is critical. Commonly used polylysine substrates can suffer from batch variability owing to their polymeric nature. Herein, we report the use of chemically well-defined, self-assembling tetrapeptides as substrates for primary neuronal culture. These water-soluble peptides assemble into fibers which facilitate adhesion and development of primary neurons, their long-term survival (>40 days), synaptic maturation, and electrical activity. Furthermore, these substrates are permissive toward neuronal transfection and transduction which, coupled with their uniformity and reproducible nature, make them suitable for a wide variety of applications in neuroscience.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b07560 | DOI Listing |
Microcephaly affects 1 in 2,500 babies per year. Primary microcephaly results from aberrant neurogenesis leading to a small brain at birth. This is due to altered patterns of proliferation and/or early differentiation of neurons.
View Article and Find Full Text PDFFront Toxicol
January 2025
Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, United States.
Primary cell cultures from rodent brain are widely used to investigate molecular and cellular mechanisms of neurotoxicity. To date, however, it has been challenging to reliably culture endogenous microglia in dissociated mixed cultures. This is a significant limitation of most neural cell models given the growing awareness of the importance of interactions between neurons, astrocytes and microglia in defining responses to neurotoxic exposures.
View Article and Find Full Text PDFLysophosphatidylinositol (LPI) is an endogenous signaling molecule for the GPR55 receptor. Previous studies have shown that arachidonoyl-lysophosphatidylinositol (LPI-20:4) produced an increase in the inflammatory mediators NLPR3 (inflammasome - 3 marker) and IL-1b in neurons from both rat dorsal root ganglion (DRG) and hippocampal cultures. Because LPI is comprised of a family of lipid structures that vary in fatty acyl composition, the current work examined neuroinflammatory responses to various LPI structures in DRG and hippocampal cultures as assessed by high content fluorescent imaging.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi China.
The locus coeruleus (LC), as the primary source of norepinephrine (NE) in the brain, is central to modulating cognitive and behavioral processes. This review synthesizes recent findings to provide a comprehensive understanding of the LC-NE system, highlighting its molecular diversity, neurophysiological properties, and role in various brain functions. We discuss the heterogeneity of LC neurons, their differential responses to sensory stimuli, and the impact of NE on cognitive processes such as attention and memory.
View Article and Find Full Text PDFVitam Horm
January 2025
Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar pradesh, India.
The discovery of Kisspeptin (Kiss) has opened a new direction in research on neuroendocrine control of reproduction in vertebrates. Belonging to the RF amide family of peptides, Kiss and its cognate receptor Gpr54 (Kissr) have a long and complex evolutionary history. Multiple forms of Kiss and Kissr are identified in non-mammalian vertebrates, with the exception of birds, and monotreme mammals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!