AI Article Synopsis

  • Bile acids are essential for lipid metabolism and absorption, with the ileal apical sodium-dependent bile acid transporter (ASBT) playing a key role in their reuptake and balance.
  • Recent research has explored how ASBT is regulated and its connections to conditions like intestinal inflammation, cancer, diabetes, and high lipid levels.
  • The findings suggest that targeting ASBT could be a promising therapeutic approach for addressing these health issues.

Article Abstract

Bile acids play critical roles in the regulation of metabolism and absorption of lipids. The ileal apical sodium-dependent bile acid transporter (ASBT) located at the enterocyte brush border is responsible for the reuptake of bile acids and the maintenance of bile acid homeostasis. Recently, a number of investigations have been made concerning the regulation and control of ASBT and the relationship between ASBT and intestinal inflammation, tumorigenesis, diabetes mellitus and hyperlipemia, which suggests ASBT as a potential therapeutic target of these diseases. In this review, advances in the study of above-mentioned issues were summarized.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bile acid
12
ileal apical
8
apical sodium-dependent
8
sodium-dependent bile
8
bile acids
8
bile
5
[advances studies
4
studies ileal
4
acid transporter]
4
transporter] bile
4

Similar Publications

Ena-bile-ing liver cancer growth.

Science

January 2025

Gastroenterology Division, Massachusetts General Hospital, Boston, MA, USA.

Bile acids differentially affect immune cell responses to liver cancer.

View Article and Find Full Text PDF

The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.

View Article and Find Full Text PDF

Background: The aim of this study was to identify a gut microbial signature associated with patterns of gray matter volume in AD, and to validate the microbial signature by testing it against measures of AD pathology and cognitive performance. Prior literature suggests that microbial species involved in bile acid production and inflammation may be implicated in the microbial signature.

Method: The sample comprised 204 Microbiome in Alzheimer's Risk Study participants (22 AD, 10 MCI, and 172 CN; 129 Females, 78 APOE+) from the Wisconsin Alzheimer's Disease Research Center and Wisconsin Registry for Alzheimer's Prevention.

View Article and Find Full Text PDF

Current approach to diagnosis and management of low-phospholipid associated cholelithiasis syndrome.

Curr Opin Gastroenterol

January 2025

Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis, European Reference Network on Hepatological Diseases (ERN Rare-Liver), Saint-Antoine Hospital, Assistance Publique - Hôpitaux de Paris; Sorbonne University, INSERM, Saint-Antoine Research Center (CRSA).

Purpose Of Review: Low phospholipid-associated cholelithiasis (LPAC) syndrome is a rare genetic form of intrahepatic cholesterol lithiasis, affecting mainly young adults. This review describes the recent advances in genetic and clinical characterization, diagnosis and management of LPAC syndrome.

Recent Findings: Recent publications report data from several retrospective cohorts.

View Article and Find Full Text PDF

Deficiency of Epithelial PIEZO1 Alleviates Liver Steatosis Induced by High-Fat Diet in Mice.

Int J Biol Sci

January 2025

Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

PIEZO1 has been found to play a vital role in regulating intestinal epithelial cells (IEC) function and maintaining intestinal barrier in recent years. Therefore, IEC PIEZO1 might exert a significant impact on liver metabolism through the gut-liver axis, but there is no research on this topic currently. Classic high-fat diet (HFD) model and mice with IEC-specific deficiency of PIEZO1 ( ) were used to explore the problem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!