Background: Diabetic foot management is a challenge for reconstructive surgeons because it combines dramatically decreased circulation and chronic infection. The goal of managing this condition is to maximize viable tissue; however, unsatisfactory results, such as extremity amputation, are unavoidable in some cases. For appropriate management, thorough understanding of diabetic foot and the phased approach to its management is needed. The purpose of this study is to introduce an optimal algorithm for diabetic foot management by analyzing cases >12 years.
Methods: A total of 274 patients with diabetic foot at Hanyang University Guri Hospital from 2005 to 2017 were reviewed. The management process was divided into 5 steps: patient evaluation, wound preparation, improving vascularity, surgery and dressing, and rehabilitation. Patient evaluation included a microbial culture, evaluation of vascularity, and an osteomyelitis assessment. During wound preparation, debridement and negative-pressure wound therapy were performed. Vascularity was improved by radiological intervention or surgical method. Surgery and dressing were performed depending on the indications. Rehabilitation was started after complete wound healing.
Results: An infection was confirmed in 213 of 263 patients (81.0%). Of 74 cases in which a vascular study was performed, 83.8% showed arterial occlusion. When surgery was performed with complete eradication of the infection in 155 patients, the rate of revision surgery was 20.6%. The revision rate after surgery with a remnant infection of 66 patients was 40.9% (P = .0003). When surgery was performed after successful revascularization for improving blood flow of 47 patients, the rate of revision surgery was 21.3%. In contrast, the revision rate after surgery with unsuccessful or no revascularization of 174 patients was 28.2% (P = .359).
Conclusion: Diabetic foot is a debilitating disease arising from multifactorial process. As its management is complex, a comprehensive but accessible treatment algorithm is needed for successful results. For this reason, the appropriate algorithm for diabetic foot management introduced in this study is significant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076129 | PMC |
http://dx.doi.org/10.1097/MD.0000000000011454 | DOI Listing |
Int J Low Extrem Wounds
January 2025
Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal medicine, Democritus University of Thrace, Alexandroupolis, Greece.
Rev Clin Esp (Barc)
January 2025
Servicio Medicina Interna, Hospital Universitario Rey Juan Carlos, Móstoles, Madrid, Spain; Escuela Internacional Doctorado, Universidad Rey Juan Carlos, Madrid, Spain; Grupo Gestión, Sociedad Española Medicina Interna, Spain; Hospital Universitario Rey Juan Carlos, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain.
Introduction: Diabetic foot infections represent a common and serious complication of diabetes mellitus, with a wide range of clinical presentations. Despite their significance, uncertainties persist regarding their management and impact on Internal Medicine services.
Materials And Methods: A retrospective cohort study was conducted using data from the Registry of Specialized Healthcare Activity (RAE-CMBD) over a five-year period (2018-22).
Trends Biotechnol
January 2025
Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan. Electronic address:
Autologous or allogeneic platelet-derived extracellular vesicles (pEVs) show potential in enhancing tissue recovery and healing chronic wounds. pEVs promote neovascularization and cell migration while reducing inflammation, oxidative stress, and scarring. However, their efficacy in clinical settings is challenged by their susceptibility to washout by wound exudate.
View Article and Find Full Text PDFDiabet Med
January 2025
School of Medicine, University of Galway, Galway, Ireland.
Aims: To describe the sonographic features of active Charcot neuro-osteoarthropathy (CNO) and assess the potential role of ultrasound in identifying those with active CNO.
Methods: Using a prospective case-series study design we assessed the sonographic features of 14 patients with a diagnosis of diabetes presenting with clinical signs and symptoms suspicious for active CNO. Patients had standard weight-bearing plain X-Ray and, where possible, MRI to evaluate the presence of active CNO.
Nutrients
January 2025
Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia.
Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!