We introduce and study in two dimensions a new class of dry, aligning active matter that exhibits a direct transition to orientational order, without the phase-separation phenomenology usually observed in this context. Characterized by self-propelled particles with velocity reversals and a ferromagnetic alignment of polarities, systems in this class display quasi-long-range polar order with continuously varying scaling exponents, yet a numerical study of the transition leads to conclude that it does not belong to the Berezinskii-Kosterlitz-Thouless universality class but is best described as a standard critical point with an algebraic divergence of correlations. We rationalize these findings by showing that the interplay between order and density changes the role of defects.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.120.258002DOI Listing

Publication Analysis

Top Keywords

self-propelled particles
8
particles velocity
8
velocity reversals
8
reversals ferromagnetic
8
ferromagnetic alignment
8
active matter
8
quasi-long-range polar
8
polar order
8
alignment active
4
class
4

Similar Publications

We present the results from kinetic theory for a system of self-propelled particles with alignment interactions of higher-order symmetry, particularly nematic ones. To this end, we use the Landau equation approach, a systematic approximation to the BBGKY hierarchy for small effective couplings. Our calculations are presented in a pedagogical way with the explicit goal of serving as a tutorial from a physicists' perspective into applying kinetic theory ideas beyond mean-field to active matter systems with essentially no prerequisites and yield predictions without free parameters that are in quantitative agreement with direct agent-based simulations.

View Article and Find Full Text PDF

The ability of particles to transform absorbed energy into translational movements brings peculiar order into nonequilibrium matter. Connected together into a chain, these particles collectively behave completely differently from well-known equilibrium polymers. Examples of such systems vary from nanoscale to macroscopic objects.

View Article and Find Full Text PDF

Platinum-coated Janus colloids exhibit self-propelled motion in aqueous solution via the catalytic decomposition of hydrogen peroxide. Here, we report their motion in a uniformly aligned nematic phase of lyotropic chromonic liquid crystal, disodium cromoglycate (DSCG). When active Janus colloids are placed in DSCG, we find that the anisotropy of the liquid crystal imposes a strong sense of direction to their motion; the Janus colloids tend to move parallel to the nematic director.

View Article and Find Full Text PDF

Stochastic resetting has recently emerged as an efficient target-searching strategy in various physical and biological systems. The efficiency of this strategy depends on the type of environmental noise, whether it is thermal or telegraphic (active). While the impact of each noise type on a search process has been investigated separately, their combined effects have not been explored.

View Article and Find Full Text PDF

Recent advancements in catalytic micromotors have shown significant potential for environmental applications, yet challenges such as particle agglomeration persist. In this study, we compare the degradation of methylene blue using hematite particles fully coated with platinum and those partially decorated with platinum. The selective decoration, confirmed through techniques like EDX, FESEM, TEM, and XPS, plays a crucial role in the micromotors' behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!