The enigmatic even-denominator fractional quantum Hall state at Landau level filling factor ν=5/2 is arguably the most promising candidate for harboring Majorana quasiparticles with non-Abelian statistics and, thus, of potential use for topological quantum computing. The theoretical description of the ν=5/2 state is generally believed to involve a topological p-wave pairing of fully-spin-polarized composite fermions through their condensation into a non-Abelian Moore-Read Pfaffian state. There is, however, no direct and conclusive experimental evidence for the existence of composite fermions near ν=5/2 or for an underlying fully-spin-polarized Fermi sea. Here, we report the observation of composite fermions very near ν=5/2 through geometric resonance measurements and find that the measured Fermi wave vector provides direct demonstration of a Fermi sea with full spin polarization. This lends crucial credence to the model of 5/2 fractional quantum Hall effect as a topological p-wave paired state of composite fermions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.120.256601DOI Listing

Publication Analysis

Top Keywords

composite fermions
20
fermi sea
12
observation composite
8
fully-spin-polarized fermi
8
fractional quantum
8
quantum hall
8
topological p-wave
8
fermions ν=5/2
8
composite
5
fermions
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!