Spatio-temporal symmetry - crystallographic point groups with time translations and time inversion.

Acta Crystallogr A Found Adv

Department of Physics, Eberly College of Science, The Pennsylvania State University, Penn State Berks, PO Box 7009, Reading, PA 19610-6009, USA.

Published: July 2018

The crystallographic symmetry of time-periodic phenomena has been extended to include time inversion. The properties of such spatio-temporal crystallographic point groups with time translations and time inversion are derived and one representative group from each of the 343 types has been tabulated. In addition, stereographic symmetry and general-position diagrams are given for each representative group. These groups are also given a notation consisting of a short Hermann-Mauguin magnetic point-group symbol with each spatial operation coupled with its associated time translation.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053273318004667DOI Listing

Publication Analysis

Top Keywords

time inversion
12
crystallographic point
8
point groups
8
groups time
8
time translations
8
translations time
8
representative group
8
time
6
spatio-temporal symmetry
4
symmetry crystallographic
4

Similar Publications

Background: Pickleball is one of the fastest-growing sports in the United States. It is popular among seniors but has recently grown across all age groups. As pickleball has gained interest, its corresponding injury burden has also increased.

View Article and Find Full Text PDF

Precipitable water vapor (PWV) is an important indicator to characterize the spatial and temporal variability of water vapor. A high spatial and temporal resolution of atmospheric precipitable water can be obtained using ground-based GNSS, but its inversion accuracy is usually limited by the weighted mean temperature, Tm. For this reason, based on the data of 17 ground-based GNSS stations and water vapor reanalysis products over 2 years in the Hong Kong region, a new model for water vapor inversion without the Tm parameter is established by deep learning in this paper, the research results showed that, compared with the PWV information calculated by the traditional model using Tm parameter, the accuracy of the PWV retrieved by the new model proposed in this paper is higher, and its accuracy index parameters BIAS, MAE, and RMSE are improved by 38% on average.

View Article and Find Full Text PDF

This study employs electrical resistivity tomography (ERT) to experimentally investigate the migration characteristics of light non-aqueous phase liquids (LNAPL) under various groundwater conditions. Through cross-hole measurements and time-lapse inversion, the migration process of LNAPL under three scenarios-unsaturated conditions, constant groundwater levels, and declining water levels-was systematically analyzed. The results indicate that LNAPL migration behavior exhibits significant differences under different conditions.

View Article and Find Full Text PDF

Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses.

Membranes (Basel)

January 2025

Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur Col. Centro, Cd. Obregón C.P. 85000, Sonora, Mexico.

Technical and economic criteria were used to evaluate the feasibility of the treatment of an industrial effluent (10 m/h) for water recovery and reuse. The treatment evaluation included the following: (1) effluent characteristic determination; (2) selection and evaluation of the effluent treatment at lab scale, establishing operating conditions and process efficiency; (3) scaling up the treatment process to the industrial level; (4) treatment plant design and commercial availability analysis of the required equipment; and (5) the costs of the inversion and operation of the plant treatment, cost/m for water recovery, and time of investment recovery. The physicochemical characteristics of the effluent exposed the polluted wastewater with sodium chloride salts and colourants, predominating a mixture of tartrazine, Red 40, and brilliant blue from the synthesis of food additives.

View Article and Find Full Text PDF

Image quality assessment and white matter hyperintensity quantification in two accelerated high-resolution 3D FLAIR techniques: Wave-CAIPI and deep learning-based SPACE.

Clin Radiol

December 2024

Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.

Aim: To compare the image quality obtained using two accelerated high-resolution 3D fluid-attenuated inversion recovery (FLAIR) techniques for the brain-deep learning-reconstruction SPACE (DL-SPACE) and Wave-CAIPI FLAIR.

Materials And Methods: A total of 123 participants who underwent DL-SPACE and Wave-CAIPI FLAIR brain imaging were retrospectively reviewed. In a qualitative analysis, two radiologists rated the quality of each image, including the overall image quality, artifacts, sharpness, fine-structure conspicuity, and lesion conspicuity based on Likert scales.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!