High-efficiency lactulose-producing enzyme of Caldicellulosiruptor saccharolyticus cellobiose 2-epimerase (WT- CsCE) was immobilized in the form of cross-linked enzyme aggregates (CLEAs). Conditions for enzyme aggregation and cross-linking were optimized, and a sugar-assisted strategy with less damage to enzyme secondary structures was developed to improve the activity yield of CLEAs up to approximately 65%. The resulting CLEAs with multiple-layer network structures exhibited an enlarged optimal temperature range (70-80 °C) and maintained higher activity at 50-90 °C. Besides, CLEAs retained more than 95% of their initial activity after 10 successive batches at 60 °C, demonstrating superior reusability. Moreover, CLEAs displayed an equivalent or higher catalytic ability to free WT- CsCE in lactulose biosynthesis, and the final sugar ratios were similar, lactulose 58.8-61.7%, epilactose 9.3-10.2%, and lactose 27.8-30%, with a constant isomerization selectivity of 0.84-0.87 regardless of enzymes used and temperature applied. The proposed strategy is the first trial for enzymatic synthesis of lactulose catalyzed by CLEAs of WT- CsCE.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.8b02333DOI Listing

Publication Analysis

Top Keywords

wt- csce
12
cross-linked enzyme
8
enzyme aggregates
8
aggregates cleas
8
cellobiose 2-epimerase
8
caldicellulosiruptor saccharolyticus
8
cleas
7
enzyme
5
preparation characterization
4
characterization sugar-assisted
4

Similar Publications

High-efficiency lactulose-producing enzyme of Caldicellulosiruptor saccharolyticus cellobiose 2-epimerase (WT- CsCE) was immobilized in the form of cross-linked enzyme aggregates (CLEAs). Conditions for enzyme aggregation and cross-linking were optimized, and a sugar-assisted strategy with less damage to enzyme secondary structures was developed to improve the activity yield of CLEAs up to approximately 65%. The resulting CLEAs with multiple-layer network structures exhibited an enlarged optimal temperature range (70-80 °C) and maintained higher activity at 50-90 °C.

View Article and Find Full Text PDF

Industrial application of Caldicellulosiruptor saccharolyticus cellobiose 2-epimerase (CsCE) for lactulose synthesis is limited by low enzyme activity and formation of epilactose as by-product. After four sequential rounds of random mutagenesis and screening, an optimal mutant G4-C5 was obtained. Compared with wild type (WT) enzyme, mutant G4-C5 demonstrated 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!