When two overlapping tasks are processed, they hit a bottleneck at a central processing stage that prevents simultaneous processing of the two tasks. Thus far, however, the factors determining the processing order of the tasks at the bottleneck are unknown. The present study was designed to (re)investigate whether the arrival times of the two tasks at the central bottleneck are a key determinant of the processing order (cf. Sigman & Dehaene, 2006). To this end, we implemented a visual-auditory dual task with a random stimulus order, in which we manipulated arrival time by prolonging the initial, perceptual processing stage (stimulus analysis) of the visual task and compared the effects of this manipulation with those of one impacting the central bottleneck stage of the visual task. Additionally, we implemented two instruction conditions: Participants were told to respond either in the order of stimulus presentation or in the order they preferred. The manipulation of the visual perception stage led to an increase in task response reversals (i.e., the response order was different from the order of stimulus presentation), whereas there was no such increase when the bottleneck stage was manipulated. This pattern provides conclusive evidence that the processing order at the bottleneck is (at least in part) determined by the arrival times of the tasks at that point. Reaction time differences between the two instruction conditions indicated that additional control processes are engaged in determining task processing order when the participants are expressly told to respond in the order of stimulus presentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13414-018-1541-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!