The number of publications devoted to studying electrochemical reactions in room temperature ionic liquids (RTILs) is constantly growing, but very few of them have been devoted to defining proper experimental conditions to obtain reproducible electrochemical results. In this work, we demonstrate that the combination of a proper RTIL purification treatment and a filtered Ar gas stream allow us to obtain featureless voltammograms in [C4mim][BF4], [C4mim][NTf2], and [C4m2im][NTf2], which otherwise present signals associated with different types of impurities such as water and some minor electroactive impurities acquired during the RTIL synthesis process. Moreover, we demonstrate that bubbling Ar, or another inert gas, through the electrolyte in order to purge O2 dissolved in RTILs is one of the major sources of water and O2 impurities incorporated in RTILs within the electrochemical cell. To overcome this source of water uptake, we have incorporated a gas stream purification filter before the gas reaches the RTIL in the electrochemical cell. To illustrate the effect of these impurities in relevant electrocatalytic studies, we study the electrocatalytic reduction of CO2 on Pt nanoparticles and the key role of an appropiate filter when the CO2 gas stream is bubbled within imidazolium based RTILs. Our cyclic voltammetric studies point out that CO2 electroreduction on Pt nanoparticles only presents activity in [C4mim][NTf2] and [C4m2im][NTf2], thus suggesting that the C-2 position on the imidazolium ring is not the key position in CO2 electrochemical reduction. In contrast, the same Pt nanoparticles are inactive towards CO2 electroreduction in [C4mim][BF4], which is a more hydrophilic RTIL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp02662a | DOI Listing |
Ecotoxicol Environ Saf
January 2025
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
High dam discharge can lead to total dissolved gas (TDG) supersaturation in downstream rivers, causing fish to suffer from bubble trauma and even mortality. Focusing on the Datengxia hydropower station in the Xijiang River basin, we conducted in-situ experiments to explore the tolerance patterns of economic fish species, including Ctenopharyngodon idella, Hypophthalmichthys molitrix, and Cirrhinus molitorella, under the influence of TDG supersaturation at different compensation depths. Moreover, the development and recovery patterns of bubble trauma and the swimming ability of fish exposed to TDG supersaturated water were investigated.
View Article and Find Full Text PDFAnn Agric Environ Med
December 2024
Faculty of Environmental Engineering, Lublin University of Technology, Lublin, Poland.
Objective: The aim of the study is to verify whether the electronic nose system - an array of 17 gas sensors with a signal analysis system - is a useful tool for the classification and preliminary assessment of the quality of drainage water.
Material And Methods: Water samples for analysis were collected in the Park Ludowy (People's Park), located next to the Bystrzyca River, near the city center of Lublin in eastern Poland. Drainage water was sampled at 4 different points.
Adv Sci (Weinh)
December 2024
Freie Universität Berlin, Institut für Chemie und Biochemie - Anorganische Chemie, Fabeckstr. 34/36, 14195, Berlin, Germany.
Herein hyperbranched polyethyleneimine (hPEI) cryogels are reported for the selective and reversible adsorption of elemental chlorine. The cryogels are prepared in an aqueous solution by crosslinking with glutaraldehyde at subzero temperatures. The final macroporous composites bearing ammonium chloride groups are obtained after freeze-drying.
View Article and Find Full Text PDFAdv Biochem Eng Biotechnol
December 2024
LEQUiA, Institute of the Environment, University of Girona, Girona, Catalonia, Spain.
Addressing global challenges of waste management demands innovative approaches to turn biowaste into valuable resources. This chapter explores the potential of microbial electrochemical technologies (METs) as an alternative opportunity for biowaste valorisation and resource recovery due to their potential to address limitations associated with traditional methods. METs leverage microbial-driven oxidation and reduction reactions, enabling the conversion of different feedstocks into energy or value-added products.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.
Electrochemical carbon dioxide (CO) reduction from aqueous solutions offers a promising strategy to overcome flooding and salt precipitation in gas diffusion electrodes used in gas-phase CO electrolysis. However, liquid-phase CO electrolysis often exhibits low CO reduction rates because of limited CO availability. Here, a macroporous Ag mesh is employed and activated to achieve selective CO conversion to CO with high rates from an aqueous bicarbonate solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!