Introduction: Methicillin-resistant (MRSA) is a highly resistant and difficult to cure zoonotic microorganism, which makes up a large part of food toxic infections and has shown high prevalence among pig population all over the world. The aim of the study was to establish the occurrence of MRSA in slaughterhouses, evaluate its antimicrobial resistance, and verify whether there are any differences or similarities with reference to other European countries.
Material And Methods: A total of 100 pigs, 105 carcasses, 19 workers, and 24 samples from the environment of several slaughterhouses were examined by conventional microbial and molecular methods.
Results: In total, 78 MRSA isolates were found. MRSA prevalence in slaughtered pigs varied from 8.0% to 88.6% depending on the slaughterhouse, reaching higher prevalence in slaughterhouses with higher slaughter capacity. In total, 21.1% of all workers were carriers of MRSA and 6.7% of carcasses were contaminated with MRSA. The 98.2% of MRSA isolates were resistant to penicillin, 89.1% to tetracycline, 60.1% to erythromycin, 65.5% to gentamycin, and 15 different types were found, among which type was most widespread.
Conclusion: The study indicated that MRSA prevalence and types differed according to slaughterhouse slaughter capacity and good hygiene practices. Quite high MRSA occurrence among slaughterhouse workers is one of the main factors which increase pork contamination risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5894418 | PMC |
http://dx.doi.org/10.1515/jvetres-2017-0037 | DOI Listing |
Sci Rep
January 2025
Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21951-902, Brazil.
Staphylococcus aureus is a relevant pathogen in bloodstream infections (BSI), and the emergency of the COVID-19 pandemic increased its antimicrobial resistance. S. aureus isolates from BSI (September/2019 - March/2021) were analyzed phenotypically and molecularly, in addition to the clinical features of the patients.
View Article and Find Full Text PDFCurr Probl Surg
January 2025
Department of Endocrinology, Shanghai Jiaotong University School of Medicine, Shanghai, China. Electronic address:
Ecotoxicol Environ Saf
January 2025
Department of Medical Microbiology, Second Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic. Electronic address:
Public transport represents a potential site for the transmission of resistant pathogens due to the rapid movement of large numbers of people. This study aimed to investigate the bacterial contamination of frequently touched surfaces in the public transport system operating in the proximity of the biggest Czech hospital during the coronavirus pandemic despite extensive cleaning and disinfection efforts. In June and September 2020, samples from the metro trains, ground transport and stationary objects were collected, enriched and cultured.
View Article and Find Full Text PDFInfect Drug Resist
December 2024
Respiratory Support Team, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan.
Background: Ventilator-associated pneumonia (VAP) is one of the most lethal complications in intensive care unit (ICU) patients. However, critical issues of non-survivors vary and are still unclear in VAP patients.
Methods: The clinical differences between survivors and non-survivors of VAP were retrospectively analyzed in patients hospitalized from April 2023 to March 2024.
Sci Rep
January 2025
Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Králové, 2089, Zborovská, Hradec Králové, 500 03, Czech Republic.
Polymicrobial biofilms, the reason for most chronic wound infections, play a significant role in increasing antibiotic resistance. The in vivo effectiveness of the new anti-biofilm therapy is conditioned by the profound evaluation using appropriate in vitro biofilm models. Since nutrient availability is crucial for in vitro biofilm formation, this study is focused on the impact of four selected cultivation media on the properties of methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!