AI Article Synopsis

  • Faculty members prioritize fair and transparent salary policies, expecting compensation to be competitive with the market and aimed at attracting and retaining talent.
  • The salary structure in the pathology department consists of three components: base salary based on rank and years, additional compensation for defined roles, and a performance-based bonus (part C) that incentivizes contributions to the department’s goals.
  • Recent changes to part C have transitioned to a more objective evaluation system focused on research productivity, educational excellence, and clinical improvements, allowing faculty to better understand and track their compensation outcomes.

Article Abstract

Faculty value equitable and transparent policies for determining salaries and expect their compensation to compare favorably to the marketplace. Academic institutions use compensation to recruit and retain talented faculty as well as to reward accomplishment. Institutions are therefore working to decrease salary disparities that appear arbitrary or reflect long-standing biases and to identify metrics for merit-based remuneration. Ours is a large academic pathology department with 97 tenure-track faculty. Faculty salaries are comprised of 3 parts (A + B + C). Part A is determined by the type of appointment and years at rank; part B recognizes defined administrative, educational, or clinical roles; and part C is a bonus to reward and incentivize activities that forward the missions of the department and medical school. A policy for part C allocations was first codified and approved by department faculty in 1993. It rewarded performance using a semiquantitative scale, based on subjective evaluations of the department director (chair) in consultation with deputy directors (vice chairs) and division directors. Faculty could not directly calculate their part C, and distributions data were not widely disclosed. Over the last 2 years (2015-2017), we have implemented a more objective formula for quantifying an earned part C, which is primarily designed to recognize scholarship in the form of research productivity, educational excellence, and clinical quality improvement. Here, we share our experience with this approach, reviewing part C calculations as made for individual faculty members, providing a global view of the resulting allocations, and considering how the process and outcomes reflect our values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6024278PMC
http://dx.doi.org/10.1177/2374289518777463DOI Listing

Publication Analysis

Top Keywords

faculty
8
evolution earned
4
earned transparent
4
transparent quantifiable
4
quantifiable faculty
4
faculty salary
4
salary compensation
4
compensation johns
4
johns hopkins
4
hopkins pathology
4

Similar Publications

The EN ISO 15189:2022 standard, titled "Medical laboratories - Requirements for quality and competence," is a significant update to the regulations for medical laboratories. The revised standard was published on December 6, 2022, replacing both EN ISO 15189:2012 and EN ISO 22870:2016. Key objectives of the revision include: 1.

View Article and Find Full Text PDF

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Measurement of CP Violation Observables in D^{+}→K^{-}K^{+}π^{+} Decays.

Phys Rev Lett

December 2024

Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

A search for violation of the charge-parity (CP) symmetry in the D^{+}→K^{-}K^{+}π^{+} decay is presented, with proton-proton collision data corresponding to an integrated luminosity of 5.4  fb^{-1}, collected at a center-of-mass energy of 13 TeV with the LHCb detector. A novel model-independent technique is used to compare the D^{+} and D^{-} phase-space distributions, with instrumental asymmetries subtracted using the D_{s}^{+}→K^{-}K^{+}π^{+} decay as a control channel.

View Article and Find Full Text PDF

Interfacial Dripping Faucet: Generating Monodisperse Liquid Lenses.

Phys Rev Lett

December 2024

Carlos III University of Madrid, Thermal and Fluids Engineering Department, Avenida de la Universidad, 30 (Sabatini building), 28911 Leganés (Madrid), Spain.

We present a surface analog to a dripping faucet, where a viscous liquid slides down an immiscible meniscus. Periodic pinch-off of the dripping filament is observed, generating a succession of monodisperse floating lenses. We show that this interfacial dripping faucet can be described analogously to its single-phase counterpart, replacing surface tension by the spreading coefficient, and even undergoes a transition to a jetting regime.

View Article and Find Full Text PDF

The tomography of photonic quantum states is key in quantum optics, impacting quantum sensing, computing, and communication. Conventional detectors are limited in their temporal and spatial resolution, hampering high-rate quantum communication and local addressing of photonic circuits. Here, we propose to utilize free electron-photon interactions for quantum state tomography, introducing electron homodyne detection with potential for femtosecond-temporal and nanometer-spatial resolutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!