Titanium dioxide photocatalysts have received a lot of attention during the past decades due to their ability to degrade various organic pollutants to CO and HO, which makes them suitable for use in environmental related fields such as air and water treatment and self-cleaning surfaces. In this work, titania thin films and powders were prepared by a particulate sol-gel route, using titanium tetrachloride (TiCl) as a precursor. Afterwards, the prepared sols were doped with nitrogen (ammonium nitrate, urea), sulfur (thiourea) and platinum (chloroplatinic acid), coated onto glass substrates by dip-coating, and thermally treated in a muffle furnace to promote crystallization. The resulting thin films were then characterized by various techniques (i.e., TGA-DSC-MS, XRD, BET, XPS, SEM, band gap measurements). The photocatalytic activity of the prepared thin films was determined by measuring the degradation rate of plasmocorinth B (PB), an organic pigment used in the textile industry, which can pose an environmental risk when expelled into wastewater. A kinetic model for adsorption and subsequent degradation was used to fit the experimental data. The results have shown an increase in photocatalytic activity under visible-light illumination of nonmetal and metal doped and co-doped titania thin films compared to an undoped sample.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009332PMC
http://dx.doi.org/10.3762/bjnano.9.155DOI Listing

Publication Analysis

Top Keywords

thin films
20
titania thin
12
visible-light illumination
8
photocatalytic activity
8
thin
5
films
5
sulfur- nitrogen-
4
nitrogen- platinum-doped
4
platinum-doped titania
4
films high
4

Similar Publications

Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).

View Article and Find Full Text PDF

Perovskites at the crossover between ferroelectric and relaxor are often used to realize dielectric capacitors with high energy and power density and simultaneously good efficiency. Lead-free BiNaTiO is gaining importance in showing an alternative to lead-based devices. Here we show that ()BiNaTiO - BaZr Ti O (best: 0.

View Article and Find Full Text PDF

Phase Coexistence Induced Giant Dielectric Tunability and Electromechanical Response in PbZrO Epitaxial Thin Films.

Small

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

PbZrO (PZO) thin films, as a classic antiferroelectric material, have attracted tremendous attention for their excellent dielectric, electromechanical, and thermal switching performances. However, several fundamental questions remain unresolved, particularly the existence of an intermediate phase during the transition from the antiferroelectric (AFE) to ferroelectric (FE) state. Here, a phase coexistence configuration of an orthorhombic AFE phase and a tetragonal-like (T-like) phase is reported in epitaxial antiferroelectric PZO thin films, with thickness ranging from 16 to 110 nm.

View Article and Find Full Text PDF

InSb is a material of choice for infrared as well as spintronic devices but its integration on large lattice mismatched semi-insulating III-V substrates has so far altered its exceptional properties. Here, we investigate the direct growth of InSb on InP(111)B substrates with molecular beam epitaxial growth. Despite the lack of a thick metamorphic buffer layer for accommodation, we show that quasi-continuous thin films can be achieved using a very high Sb/In flux ratio.

View Article and Find Full Text PDF

Electrochromic materials were discovered in the 1960s when scientists observed reversible changes between the light and dark states in WO thin films under different voltages. Since then, researchers have identified various electrochromic material systems, including transition metal oxides, polymer materials, and small molecules. However, the electrochromic phenomenon has rarely been observed in non-metallic elemental substances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!