A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Light extraction efficiency enhancement of flip-chip blue light-emitting diodes by anodic aluminum oxide. | LitMetric

Light extraction efficiency enhancement of flip-chip blue light-emitting diodes by anodic aluminum oxide.

Beilstein J Nanotechnol

Graduate Institute of Opto-Mechatronics, National Chung Cheng University, 168 University Rd., Min-Hsiung, Chia-Yi 62102, Taiwan.

Published: May 2018

We produced an anodic aluminum oxide (AAO) structure with periodic nanopores on the surface of flip-chip blue light-emitting diodes (FC-BLEDs). The nanopores had diameters ranging from 73 to 85 nm and were separated by distances ranging from approximately 10 to 15 nm. The light extraction efficiency enhancement of the FC-BLEDs subjected to different durations of the second pore-widening process was approximately 1.6-2.9%. The efficiency enhancement may be attributed to the following mechanism: periodic nanopores on the surface of FC-BLEDs reduce the critical angle of total reflection and effective energy transfer from a light emitter into a surface plasmon mode produced by AAO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009532PMC
http://dx.doi.org/10.3762/bjnano.9.152DOI Listing

Publication Analysis

Top Keywords

efficiency enhancement
12
light extraction
8
extraction efficiency
8
flip-chip blue
8
blue light-emitting
8
light-emitting diodes
8
anodic aluminum
8
aluminum oxide
8
periodic nanopores
8
nanopores surface
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!