Robust topological phase in proximitized core-shell nanowires coupled to multiple superconductors.

Beilstein J Nanotechnol

School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik, Iceland.

Published: May 2018

We consider core-shell nanowires with prismatic geometry contacted with two or more superconductors in the presence of a magnetic field applied parallel to the wire. In this geometry, the lowest energy states are localized on the outer edges of the shell, which strongly inhibits the orbital effects of the longitudinal magnetic field that are detrimental to Majorana physics. Using a tight-binding model of coupled parallel chains, we calculate the topological phase diagram of the hybrid system in the presence of non-vanishing transverse potentials and finite relative phases between the parent superconductors. We show that having finite relative phases strongly enhances the stability of the induced topological superconductivity over a significant range of chemical potentials and reduces the value of the critical field associated with the topological quantum phase transition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009546PMC
http://dx.doi.org/10.3762/bjnano.9.142DOI Listing

Publication Analysis

Top Keywords

topological phase
8
core-shell nanowires
8
magnetic field
8
finite relative
8
relative phases
8
robust topological
4
phase proximitized
4
proximitized core-shell
4
nanowires coupled
4
coupled multiple
4

Similar Publications

Recent studies on topological materials are expanding into the nonlinear regime, while the central principle, namely the bulk-edge correspondence, is yet to be elucidated in the strongly nonlinear regime. Here, we reveal that nonlinear topological edge modes can exhibit the transition to spatial chaos by increasing nonlinearity, which can be a universal mechanism of the breakdown of the bulk-edge correspondence. Specifically, we unveil the underlying dynamical system describing the spatial distribution of zero modes and show the emergence of chaos.

View Article and Find Full Text PDF

Topology is being widely adopted to understand and to categorize quantum matter in modern physics. The nexus of topology orders, which engenders distinct quantum phases with benefits to both fundamental research and practical applications for future quantum devices, can be driven by topological phase transition through modulating intrinsic or extrinsic ordering parameters. The conjoined topology, however, is still elusive in experiments due to the lack of suitable material platforms.

View Article and Find Full Text PDF

Introducing superconductivity in topological materials can lead to innovative electronic phases and device functionalities. Here, we present a unique strategy for quantum engineering of superconducting junctions in moiré materials through direct, on-chip, and fully encapsulated 2D crystal growth. We achieve robust and designable superconductivity in Pd-metalized twisted bilayer molybdenum ditelluride (MoTe) and observe anomalous superconducting effects in high-quality junctions across ~20 moiré cells.

View Article and Find Full Text PDF

Exact Quantization of Topological Order Parameter in SU(N) Spin Models, N-ality Transformation and Ingappabilities.

Phys Rev Lett

December 2024

RIKEN, Condensed Matter Theory Laboratory, CPR, Wako, Saitama 351-0198, Japan.

We show that the ground-state expectation value of twisting operator is a topological order parameter for U(1)- and Z_{N}-symmetric symmetry-protected topological (SPT) phases in one-dimensional "spin" systems-it is quantized in the thermodynamic limit and can be used to identify different SPT phases and to diagnose phase transitions among them. We prove that this (nonlocal) order parameter must take values in Nth roots of unity, and its value can be changed by a generalized lattice translation acting as an N-ality transformation connecting distinct phases. This result also implies the Lieb-Schultz-Mattis (LSM) ingappability for SU(N) spins if we further impose a general translation symmetry.

View Article and Find Full Text PDF

In hybrid systems where nanowires are proximity-coupled with superconductors, the low-energy theory fails to determine the topological phase with Majorana fermion (MF) when the magnetic field or proximity coupling is much stronger. To overcome this limitation, we propose a holistic approach that defines MF by considering both the motion of electrons in the nanowire and the quasiparticle excitations in the superconductor. This approach transcends the constraints of low-energy theory and offers broad applicability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!