Objective: Critical limb ischemia (CLI) is the most dangerous stage of peripheral artery disease (PAD). Many basic researches and clinical treatment had been focused on stem cell transplantation for CLI. This systematic review was performed to review evidence for safety and efficacy of autologous stem cell therapy in CLI.

Methods: A systematic literature search was performed in the SinoMed, PubMed, Embase, ClinicalTrials.gov, and Cochrane Controlled Trials Register databases from building database to January 2018.

Results: Meta-analysis showed that cell therapy significantly increased the probability of ulcer healing (RR = 1.73, 95% CI = 1.45-2.06), angiogenesis (RR = 5.91, 95% CI = 2.49-14.02), and reduced the amputation rates (RR = 0.59, 95% CI = 0.46-0.76). Ankle-brachial index (ABI) (MD = 0.13, 95% CI = 0.11-0.15), TcO (MD = 12.22, 95% CI = 5.03-19.41), and pain-free walking distance (MD = 144.84, 95% CI = 53.03-236.66) were significantly better in the cell therapy group than in the control group ( < 0.01).

Conclusions: The results of this meta-analysis indicate that autologous stem cell therapy is safe and effective in CLI. However, higher quality and larger RCTs are required for further investigation to support clinical application of stem cell transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5994285PMC
http://dx.doi.org/10.1155/2018/7528464DOI Listing

Publication Analysis

Top Keywords

stem cell
20
cell therapy
20
autologous stem
12
critical limb
8
limb ischemia
8
controlled trials
8
cell transplantation
8
cell
7
95%
6
therapy
5

Similar Publications

Erdheim Chester Disease with Calvarial Involvement: A rare case of Histiocytosis.

Turk Neurosurg

March 2024

SBÜ Gaziosmanpaşa Eğitim ve Araştırma Hastanesi.

Erdheim-Chester Disease is a rare systemic xanthogranulomatous infiltrating disease, characterized by lipid-laden histiocytes accumulating in various organs and almost always in bones. Etiology of the disease is still unknown. It may involve various organs and systems, such as musculoskeletal, cardiac, pulmonary, renal, gastrointestinal and central nervous system (CNS) as well as the skin.

View Article and Find Full Text PDF

A Homozygous Variant in HSD17B1 Identified in Women With Poor Ovarian Response.

Clin Genet

January 2025

NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, ChangSha, China.

An increasing number of patients utilizing in vitro fertilization (IVF) and assisted reproductive technology (ART) are characterized as impaired or poor ovarian responders (PORs). Owing to its unclear molecular etiology, the management of patients with age-related ovarian characteristics remains a controversial and complex clinical concern. Therefore, it is important to identify and understand the etiological causes behind POR to develop more effective and efficient management strategies for these patients.

View Article and Find Full Text PDF

Photobiomodulation Combined With Human Umbilical Cord Mesenchymal Stem Cells Modulates the Polarization of Microglia.

J Biophotonics

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative regeneration laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

Neuroinflammation plays a key role in the development of neurodegenerative diseases, with microglia regulating this process through pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) modulate neuroinflammation by secreting anti-inflammatory cytokines. Photobiomodulation (PBM), a non-invasive therapy, has demonstrated significant potential in alleviating neuroinflammation.

View Article and Find Full Text PDF

3D-Printed Myocardium-Specific Structure Enhances Maturation and Therapeutic Efficacy of Engineered Heart Tissue in Myocardial Infarction.

Adv Sci (Weinh)

January 2025

Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling.

View Article and Find Full Text PDF

Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!