Clinical and experimental studies indicate a possible link between high serum levels of fibroblast growth factor 23 (FGF23), phosphate, and parathyroid hormone (PTH), deficiency of active vitamin D (1,25D) and klotho with the development of pathological cardiac remodeling, i.e., left ventricular hypertrophy and myocardial fibrosis, but a causal link has not been established so far. Here, we investigated the cardiac phenotype in klotho hypomorphic () mice and mice, two mouse models of elevated FGF23 levels and klotho deficiency, but differing in parameters of mineral metabolism, by using histology, quantitative real-time PCR, immunoblot analysis, and serum and urine biochemistry. Additionally, the specific impact of calcium, phosphate, PTH, and 1,25D on hypertrophic growth of isolated neonatal rat cardiac myocytes was investigated . mice displayed high serum Fgf23 levels, increased relative heart weight, enhanced cross-sectional area of individual cardiac myocytes, activated cardiac Fgf23/Fgf receptor (Fgfr) 4/calcineurin/nuclear factor of activated T cell (NFAT) signaling, and induction of pro-hypertrophic NFAT target genes including , brain natriuretic peptide (), and atrial natriuretic peptide () as compared to corresponding wild-type (WT) mice. Investigation of fibrosis-related molecules characteristic for pathological cardiac remodeling processes demonstrated ERK1/2 activation and enhanced expression of Tgf-β1, , and Mmp2 in mice than in WT mice. In contrast, despite significantly elevation of serum and cardiac Fgf23, and reduced renal expression, mice showed no signs of pathological cardiac remodeling. mice showed enhanced serum calcium and phosphate levels, while mice showed unchanged serum calcium levels, lower serum phosphate, and elevated serum iPTH concentrations compared to corresponding WT mice. In cultured cardiac myocytes, treatment with both calcium or phosphate significantly upregulated endogenous mRNA expression and stimulated hypertrophic cell growth and expression of pro-hypertrophic genes. The treatment with PTH induced hypertrophic cell growth only, and stimulation with 1,25D had no significant effects. In conclusion, our data indicate that mice, in contrast to mice appear to be protected from pathological cardiac remodeling during conditions of high FGF23 levels and klotho deficiency, which may be due, at least in part, to differences in mineral metabolism alterations, i.e., hypophosphatemia and lack of hypercalcemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021503 | PMC |
http://dx.doi.org/10.3389/fendo.2018.00333 | DOI Listing |
Alzheimers Dement
December 2024
UMass Chan Medical School, Worcester, MA, USA.
Background: The deficit of unawareness of cognitive impairment (cognitive anosognosia) is known to be associated with adverse health outcomes, caregiver burden, and worse cognitive outcomes. A better understanding of cognitive self-awareness and the ability to self-judge cognitive performance among the general population would enable a rational design of cognitive screening and improve how subjective cognitive decline and self-reported errors at tasks like medication administration are interpreted.
Method: Participants were enrolled in the Framingham Heart Study, which is a community-based cohort with three generations of participants.
Alzheimers Dement
December 2024
VA Boston Healthcare System, Jamaica Plain, MA, USA.
Background: Mixed dementia type - Alzheimer's Disease (AD), cerebral amyloid angiopathy (CAA), and vascular - is vastly recognized as a cause of dementia in older adults. Whereas CAA, primarily leptomeningeal, is a frequent complication in hereditary transthyretin cardiac amyloidosis (TTRCA), it is unusually reported in association with wild-type TTR, with or without polyneuropathy. The knowledge of mixed dementia and wild-type TTR association is even scarcer.
View Article and Find Full Text PDFFuture Cardiol
January 2025
Department of Cardiovascular Surgery, Arkansas Children's Hospital, Little Rock, AR, USA.
Heart valve replacement is indicated for children with irreparable heart valve disease. These replacements come in a variety of forms including mechanical, xenograft tissue, allograft tissue, and autograft tissue valves. These options each have unique benefits and risks profiles.
View Article and Find Full Text PDFCirc Cardiovasc Qual Outcomes
January 2025
Department of Emergency Medicine, Wake Forest University School of Medicine, Winston-Salem, NC. (N.P.A., A.C.S., M.W.S., M.J.M., T.H., S.A.M.).
Background: The High-STEACS (High-Sensitivity Troponin in the Evaluation of Patients With Acute Coronary Syndrome) pathway risk stratifies emergency department patients with possible acute coronary syndrome. This study aims to determine if the High-STEACS hs-cTnT (high-sensitivity cardiac troponin T) pathway can achieve the ≥99% negative predictive value (NPV) safety threshold for 30-day cardiac death or myocardial infarction (CDMI) in a multisite US cohort of patients with and without known coronary artery disease (CAD).
Methods: A secondary analysis of the STOP-CP (High-Sensitivity Cardiac Troponin T [Gen 5 STAT Assay] to Optimize Chest Pain Risk Stratification) cohort, which enrolled adult emergency department patients with possible acute coronary syndrome at 8 US sites (January 25, 2017-September 6, 2018).
Arterioscler Thromb Vasc Biol
January 2025
Cardiovascular Research Center, New York University Langone Health, New York University Grossman School of Medicine. (A.A.C.N., J.M.D., K.J.M.).
The field of cardio-oncology has traditionally focused on the impact of cancer and its therapies on cardiovascular health. Mounting clinical and preclinical evidence, however, indicates that the reverse may also be true: cardiovascular disease can itself influence tumor growth and metastasis. Numerous epidemiological studies have reported that individuals with prevalent cardiovascular disease have an increased incidence of cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!