This report presents the results from the 2016 Association of Biomolecular Resource Facilities Proteome Informatics Research Group (iPRG) study on proteoform inference and false discovery rate (FDR) estimation from bottom-up proteomics data. For this study, 3 replicate Q Exactive Orbitrap liquid chromatography-tandom mass spectrometry datasets were generated from each of 4 samples spiked with different equimolar mixtures of small recombinant proteins selected to mimic pairs of homologous proteins. Participants were given raw data and a sequence file and asked to identify the proteins and provide estimates on the FDR at the proteoform level. As part of this study, we tested a new submission system with a format validator running on a virtual private server (VPS) and allowed methods to be provided as executable R Markdown or IPython Notebooks. The task was perceived as difficult, and only eight unique submissions were received, although those who participated did well with no one method performing best on all samples. However, none of the submissions included a complete Markdown or Notebook, even though examples were provided. Future iPRG studies need to be more successful in promoting and encouraging participation. The VPS and submission validator easily scale to much larger numbers of participants in these types of studies. The unique "ground-truth" dataset for proteoform identification generated for this study is now available to the research community, as are the server-side scripts for validating and managing submissions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6011817 | PMC |
http://dx.doi.org/10.7171/jbt.18-2902-003 | DOI Listing |
J Cell Mol Med
January 2025
Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey.
Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.
View Article and Find Full Text PDFGigascience
January 2025
Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, St. Petersburg, 194064, Russia.
Osteogenic differentiation is crucial in normal bone formation and pathological calcification, such as calcific aortic valve disease (CAVD). Understanding the proteomic and transcriptomic landscapes underlying this differentiation can unveil potential therapeutic targets for CAVD. In this study, we employed RNA sequencing transcriptomics and proteomics on a timsTOF Pro platform to explore the multiomics profiles of valve interstitial cells (VICs) and osteoblasts during osteogenic differentiation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08029 Barcelona, Spain.
High-throughput proteomic platforms are crucial to identify novel Alzheimer's disease (AD) biomarkers and pathways. In this study, we evaluated the reproducibility and reliability of aptamer-based (SomaScan 7k) and antibody-based (Olink Explore 3k) proteomic platforms in cerebrospinal fluid (CSF) samples from the Ace Alzheimer Center Barcelona real-world cohort. Intra- and inter-platform reproducibility were evaluated through correlations between two independent SomaScan assays analyzing the same samples, and between SomaScan and Olink results.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
stands out among the Ranunculaceae family for its notable use as an ornamental and medicinal plant. Diterpenoid alkaloids (DAs), the characteristic compounds of , have been found to have effective analgesic and anti-inflammatory effects. Despite their medicinal potential, the toxicity of most DAs restricts the direct use of in traditional medicine, necessitating complex processing before use.
View Article and Find Full Text PDFMicrobiome
January 2025
Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark.
Background: Saliva is a protein-rich body fluid for noninvasive discovery of biomolecules, containing both human and microbial components, associated with various chronic diseases. Type-2 diabetes (T2D) imposes a significant health and socio-economic burden. Prior research on T2D salivary microbiome utilized methods such as metagenomics, metatranscriptomics, 16S rRNA sequencing, and low-throughput proteomics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!