The ability of ketamine administration to activate prefrontal glutamate neurotransmission is thought to be a key mechanism contributing to its transient psychotomimetic effects and its delayed and sustained antidepressant effects. Rodent studies employing carbon-13 magnetic resonance spectroscopy (C MRS) methods have shown ketamine and other N-methyl-D-aspartate (NMDA) receptor antagonists to transiently increase measures reflecting glutamate-glutamine cycling and glutamate neurotransmission in the frontal cortex. However, there are not yet direct measures of glutamate neurotransmission in vivo in humans to support these hypotheses. The current first-level pilot study employed a novel prefrontal C MRS approach similar to that used in the rodent studies for direct measurement of ketamine effects on glutamate-glutamine cycling. Twenty-one participants (14 healthy and 7 depressed) completed two C MRS scans during infusion of normal saline or subanesthetic doses of ketamine. Compared to placebo, ketamine increased prefrontal glutamate-glutamine cycling, as indicated by a 13% increase in C glutamine enrichment (t = 2.4, p = 0.02). We found no evidence of ketamine effects on oxidative energy production, as reflected by C glutamate enrichment. During ketamine infusion, the ratio of C glutamate/glutamine enrichments, a putative measure of neurotransmission strength, was correlated with the Clinician-Administered Dissociative States Scale (r = -0.54, p = 0.048). These findings provide the most direct evidence in humans to date that ketamine increases glutamate release in the prefrontal cortex, a mechanism previously linked to schizophrenia pathophysiology and implicated in the induction of rapid antidepressant effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6098048 | PMC |
http://dx.doi.org/10.1038/s41386-018-0136-3 | DOI Listing |
J Comp Neurol
January 2025
Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, USA.
Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720.
Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).
View Article and Find Full Text PDFBiomolecules
December 2024
Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission.
View Article and Find Full Text PDFFluorescent reporters for glutamate release and postsynaptic Ca signaling are essential tools for quantifying synapse functional heterogeneity across neurons and circuits. However, leveraging these probes for neuroscience requires scalable experimental frameworks. Here, we devised a high-throughput approach to efficiently collect and analyze hundreds of optical recordings of glutaamate release activity at presynaptic boutons in cultured rat hippocampal neurons.
View Article and Find Full Text PDFNeurogenetics
January 2025
Department of Biochemistry, College of Medicine, University of Lagos, Lagos State, Nigeria.
Schizophrenia (SZ) is a complex, chronic mental disorder characterized by positive symptoms (such as delusions and hallucinations), negative symptoms (including anhedonia, alogia, avolition, and social withdrawal), and cognitive deficits (affecting attention, processing speed, verbal and visuospatial learning, problem-solving, working memory, and mental flexibility). Extensive animal and clinical studies have emphasized the NMDAR hypofunction hypothesis of SZ. Glycine plays a crucial role as an agonist of NMDAR, enhancing the receptor's affinity for glutamate and supporting normal synaptic function and plasticity, that is, signal transmission between neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!