Acoustic manipulation by an ultrasonic phased array provides an entirely new approach to processes such as coalescence, mixing, separation, and evaporation occurring in the generation of new materials, physical property measurement, the biomedical industry, etc. However, to date, ultrasonic phased arrays have not been fully investigated for applications in fluid manipulation. This paper provides contactless coalescence and mixing techniques for droplets in air by controlling the acoustic potential by using an ultrasonic phased array. We focused on mode oscillation to propose an efficient mixing technique for liquid without contact. A comparison of mixing performance between cases with mode oscillation and without mode oscillation showed that the flow induced by mode oscillation promotes droplet mixing. Our paper demonstrates the feasibility of contactless coalescence and mixing as a first step in fluid manipulation with a phased array.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033947PMC
http://dx.doi.org/10.1038/s41598-018-28451-5DOI Listing

Publication Analysis

Top Keywords

mode oscillation
16
fluid manipulation
12
ultrasonic phased
12
phased array
12
coalescence mixing
12
contactless coalescence
8
mixing
7
contactless fluid
4
manipulation
4
manipulation air
4

Similar Publications

Advances in the fMRI analysis of the default mode network: a review.

Brain Struct Funct

December 2024

Departamento de Psicobiología y Metodología en Ciencias del Comportamiento, Facultad de Psicología, Universidad Complutense de Madrid, Pozuelo de Alarcón, 28223, Madrid, Spain.

The default mode network (DMN) is a singular pattern of synchronization between brain regions, usually observed using resting-state functional magnetic resonance imaging (rs-fMRI) and functional connectivity analyses. In comparison to other brain networks that are primarily involved in attentional-demanding tasks (such as the frontoparietal network), the DMN is linked with self-referential activities, and alterations in its pattern of connectivity have been related to a wide range of disorders. Structural connectivity analyses have highlighted the vital role of the posterior cingulate cortex and the precuneus as integrative hubs, and advanced parcellation methods have further contributed to elucidate the DMN's regions, enriching its explanatory potential across cognitive functions and dysfunctions.

View Article and Find Full Text PDF

Chronic sedentary behavior can have a negative impact on the executive function (EF) of young people. While physical activity (PA) has been shown to improve this phenomenon, the effects of different types of PA on EF vary. In this study, we compared the effects of moderate-intensity continuous training (MICT) (60-70% HRmax, 30 min), body weight training (BWT) (2 sets tabata, 20 min), and mind-body exercise (MBE) (2 sets Yang style shadowboxing, 20 min) on EF in 59 sedentary youth (n = 59, age = 20.

View Article and Find Full Text PDF

Coupling the thermal acoustic modes of a bubble to an optomechanical sensor.

Microsyst Nanoeng

December 2024

ECE Department, University of Alberta, 9211-116 St. NW, Edmonton, T6G 1H9, AB, Canada.

Optomechanical sensors provide a platform for probing acoustic/vibrational properties at the micro-scale. Here, we used cavity optomechanical sensors to interrogate the acoustic environment of adjacent air bubbles in water. We report experimental observations of the volume acoustic modes of these bubbles, including both the fundamental Minnaert breathing mode and a family of higher-order modes extending into the megahertz frequency range.

View Article and Find Full Text PDF

In this Letter, we present a theoretical study based on the Lorentz function and harmonic oscillator model to explore temporal dynamics of charge transfer plasmon (CTP) resonances. By fitting scattering curves and near-field oscillations, we determine the dephasing time of CTP modes in conductively connected gold nanodisk dimers. We show that, compared with the well-known particle plasmon and dimer plasmon modes, the CTP mode has a narrow spectral width and longer lifetime.

View Article and Find Full Text PDF

Transverse mode instability (TMI) significantly limits the power scaling of ytterbium-doped fiber lasers. In this Letter, what we believe to be a novel TMI mitigation strategy is proposed and demonstrated in a bidirectional output fiber laser. On the basis of the continuous wave (CW) pump, integrating a quasi-continuous wave (QCW) pump can effectively improve the TMI threshold of the system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!