Angelica radix (Danggui in Chinese) used in China and Japan is derived from two species of Angelica, namely Angelica sinensis and Angelica acutiloba, respectively. The differences in quality between A. sinensis radix (ASR) and A. acutiloba radix (AAR) should be therefore investigated to guide the medicinal and dietary applications of these two species. Secondary metabolites and carbohydrates have been demonstrated to be the two major kinds of bioactive components of Danggui. However, previously, quality comparison between ASR and AAR intensively concerned secondary metabolites but largely overlooked carbohydrates, thus failing to include or take into consideration an important aspect of the holistic quality of Danggui. In this study, untargeted/targeted metabolomics and glycomics were integrated by multiple chromatography-based analytical techniques for qualitative and quantitative characterization of secondary metabolites and carbohydrates in Danggui so as to comprehensively evaluate and compare the quality of ASR and AAR. The results revealed that not only secondary metabolites but also carbohydrates in ASR and AAR were different in type and amount, which should collectively contribute to their quality difference. By providing more comprehensive chemical information, the research results highlighted the need to assess characteristics of both carbohydrates and secondary metabolites for overall quality evaluation and comparison of ASR and AAR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303037 | PMC |
http://dx.doi.org/10.1016/j.jfda.2018.01.015 | DOI Listing |
ALTEX
January 2025
Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium.
The gut microbiota is unanimously acknowledged as playing a central role in human health, notably through the production of various metabolites, including short-chain fatty acids, secondary bile acids, vitamins or neurotransmitters. Beyond contributing to gut health itself, these microbial metabolites significantly impact multiple organ systems by participating in key signaling pathways along the well documented gut-organ axes. Chemicals ingested through food might interact with our gut microbiota, altering metabolites production with consequences on health.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
Flowering is a critical step in the plant life cycle. Angelica sinensis (Oliv.) Diels is a medicinal crop whose root is a well-known herbal medicine used in Asia.
View Article and Find Full Text PDFNat Rev Microbiol
January 2025
US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today's economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity.
View Article and Find Full Text PDFSci Total Environ
January 2025
Microbiology of Agroforestry Ecosystems, Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain. Electronic address:
Pinus pinaster Aiton (maritime pine) stands are suffering a generalized deterioration due to different decline episodes throughout all its distribution area. It is well known that external disturbances can alter the plant associated microbiota and metabolome, which ultimately can entail the disruption of the normal growth of the hosts. Notwithstanding, very little is known about the shifts in the microbiota and the metabolome in pine trees affected by decline.
View Article and Find Full Text PDFFood Chem
January 2025
Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU). Paseo de la Universidad n° 7, 01006 Vitoria-Gasteiz, Spain. Electronic address:
The effect of adding a tocopherol-rich natural extract (TNE) at 0.1 % and 0.5 % on sunflower oil stability under frying and accelerated storage conditions was studied using H NMR and DI-SPME-GC/MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!