In the development of the horseshoe crab, Limulus polyphemus, the fertilized egg undergoes a complicated cleavage (Stages 1-3) resulting in blastoderm formation (Stage 4). Stage 1 involves intralecithal cleavage and consists of nine discrete surface modifications (events) which have been briefly described with light microscopy by Brown and Barnum ('83). Since in Stage 1 the cortical reaction (events 1-4) has already been examined with ultrastructural methods, the objectives of the present study were to examine with scanning electron microscopy: (1) the first two of three intermittent granulations (events 5 and 7), and (2) the associated events characterized by smooth surfaces (events 4, 6, and 8). The first granulation occurs 2 1/2 to 3 hours after fertilization (22°C) and lasts approximately 1 1/2 hours. The second granulation appears approximately 5 hours after fertilization and lasts about 3 hours. The dynamic changes that occur during the two granulations involve the transformation of a smooth appearing embryonic surface, liberally coated with microvilli, into a granule-dominated surface on which microvilli are greatly reduced in number. Also of considerable interest are the numerous projections which begin to appear on the surface near the end of the second granulation (event 7) and dominate the surface of the following smooth step stage (event 8). Hypotheses on the significance of these dynamic changes and surface modifications involve relationships to the cell cycle, possible mechanisms for membrane storage, and secretory function.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmor.1051830207DOI Listing

Publication Analysis

Top Keywords

fertilized egg
8
cortical reaction
8
limulus polyphemus
8
scanning electron
8
surface modifications
8
1/2 hours
8
hours fertilization
8
second granulation
8
dynamic changes
8
surface
7

Similar Publications

Herpesviruses mimic zygotic genome activation to promote viral replication.

Nat Commun

January 2025

Institute of Virology, University Medical Center, and Faculty of Medicine, Albert-Ludwig-University Freiburg, Freiburg, Germany.

Zygotic genome activation (ZGA) is crucial for maternal to zygotic transition at the 2-8-cell stage in order to overcome silencing of genes and enable transcription from the zygotic genome. In humans, ZGA is induced by DUX4, a pioneer factor that drives expression of downstream germline-specific genes and retroelements. Here we show that herpesviruses from all subfamilies, papillomaviruses and Merkel cell polyomavirus actively induce DUX4 expression to promote viral transcription and replication.

View Article and Find Full Text PDF

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Inferring metabolic objectives and trade-offs in single cells during embryogenesis.

Cell Syst

December 2024

Center for Bioinformatics and Computational Medicine, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Electronic address:

While proliferating cells optimize their metabolism to produce biomass, the metabolic objectives of cells that perform non-proliferative tasks are unclear. The opposing requirements for optimizing each objective result in a trade-off that forces single cells to prioritize their metabolic needs and optimally allocate limited resources. Here, we present single-cell optimization objective and trade-off inference (SCOOTI), which infers metabolic objectives and trade-offs in biological systems by integrating bulk and single-cell omics data, using metabolic modeling and machine learning.

View Article and Find Full Text PDF

Upon fertilization, male and female nuclei fuse to form the zygotic nucleus in angiosperms. Karyogamy is considered to be essential for proper embryogenesis; however, the transcriptional dynamics during karyogamy in plant zygotes remain unclear. In this study, we performed a single-cell transcriptome analysis of rice zygotes at six early developmental stages (15 min, 30 min, 1 h, 2 h, 4 h, and 6 h after gamete fusion) to reveal gene expression profiles during karyogamy in plant zygotes.

View Article and Find Full Text PDF

Widespread release of translational repression across Plasmodium's host-to-vector transmission event.

PLoS Pathog

January 2025

Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America.

Malaria parasites must respond quickly to environmental changes, including during their transmission between mammalian and mosquito hosts. Therefore, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. While the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!