Salvinia minima was assessed for its ability to accumulate lead (Pb) by exposing it to concentrations of 40µM Pb(NO) during 24h. At the same time, the expression levels were quantified, of four genes coding for transporters: SmABCC (ABCC-MRP), SmATPase (ATPase-P3A), SmNhaD (Type-Na/H) and SmABCG (ABCG-WBC). In the absence of lead, S. minima had very low expression of those genes, when plants were exposed to the metal however, those genes showed a rapid (in just three hours or less) and sharp increase (up to 60 times) in their expression, particularly the SmNhaD (Type-Na/H) gene. This sharp increase in expression levels of the genes studied, occurred at the same time that the plant accumulated the highest content of lead in its tissues. The first two genes, are apparently implicated in detoxification and lead accumulation mechanisms, while the other two genes are apparently involved in maintaining cell balance (homeostatic control) and membrane integrity. Our results confirmed that S. minima is efficient for phytoremediation of water bodies contaminated by lead, as it is efficient in accumulating this metal in its tissues (bioconcentration factor; BCF) values greater than 1000, in short times of exposure. More importantly, our data on the expression profiles of four genes coding for transporters, represent a first sight scenario of the molecular basis for understanding the different mechanism of detoxification, apparently present in this aquatic fern.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2017.09.046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!