Background/aims: Proliferative vitreoretinopathy (PVR) is a common refractory eye disease that causes blindness and occurs after retinal detachment or retinal reattachment. Epidermal growth factor (EGF) has been shown to play an important role in the migration and proliferation of retinal pigment epithelium (RPE) cells, which promote PVR. Curcumin inhibits RPE cell proliferation, but it is not known whether it participates in the formation of PVR. Curcumin regulates the biological functions of EGF, which plays important roles in the development of PVR. This study aimed to evaluate the effect of curcumin on the regulation of EGF in PVR.

Methods: Rabbit RPE cells were cultured, and EGF expression was detected by immunocytochemistry. MTT assay was conducted to determine cell proliferation induced by different concentrations of EGF. Immunocytochemical staining was used to detect EGF expression after treatment with curcumin at varying concentrations. Real-time PCR (RT-PCR) and western blot analysis were used to detect the concentrations of EGF mRNA and protein after treatment with curcumin. After RPE cells and curcumin were injected into experimental rabbit eyes, the cornea, aqueous humor, lens, and vitreous opacity were observed and recorded simultaneously by indirect ophthalmoscopy, fundus color photography, and B-ultrasonography. The vitreous body was extracted, and the EGF content in the vitreous humor was measured by enzyme-linked immunosorbent assay (ELISA).

Results: At each time point (24, 48, and 72 h), cell proliferation gradually increased with increasing EGF concentrations (0, 3, 6, and 9 ng/mL) in a dose-dependent manner. Cell proliferation between EGF concentrations of 9 and 12 ng/mL were no different, which suggested that 9 ng/mL EGF was the best concentration to use to stimulate RPE cell proliferation in vitro. Under all EGF concentrations (0, 3, 6, 9, and 12 ng/mL), RPE cell proliferation increased with time (from 24 to 72 h), suggesting a time-effect relationship. Curcumin downregulated EGF expression in RPE cells, which also indicated time-effect and dose-effect relationships. The best curcumin concentration for the inhibition of EGF expression was 15 µg/mL. RT-PCR and western blot analyses indicated that the EGF mRNA and expression of the protein in RPE cells treated with curcumin significantly decreased with time. Ocular examinations revealed that the vitreous opacity was lower and the proliferative membrane was thinner in the curcumin group compared with the control group. The PVR grade and the incidence of retinal detachment were significantly lower in the experimental group than in the control group. ELISA results showed that the EGF content in vitreous humor was higher in the control group than in the curcumin group. The curcumin and control groups were significantly different at each time point.

Conclusion: Curcumin inhibited RPE cell proliferation by downregulating EGF and thus effectively inhibited the initiation and development of PVR.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000491525DOI Listing

Publication Analysis

Top Keywords

cell proliferation
28
rpe cells
20
egf
17
rpe cell
16
egf expression
16
curcumin
13
egf concentrations
12
concentrations ng/ml
12
control group
12
rpe
9

Similar Publications

Unveiling the role of miRNAs in Diminished Ovarian Reserve: an in silico network approach.

Syst Biol Reprod Med

December 2025

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.

View Article and Find Full Text PDF

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

tiRNA-Gln-CTG is Involved in the Regulation of Trophoblast Cell Function in Pre-eclampsia and Serves as a Potent Biomarker.

Front Biosci (Landmark Ed)

January 2025

Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China.

Background: Pre-eclampsia (PE) is a gestational disorder that significantly endangers maternal and fetal health. Transfer ribonucleic acid (tRNA)-derived small RNAs (tsRNAs) are important in the progression and diagnosis of various diseases. However, their role in the development of PE is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!