It was shown the alterations in hydrogen sulfide (H(2)S) metabolism and the development of oxidative and nitrozative stress in cardiovascular system by aging. The administration of pyridoxal-5-phosphate as cofactor of H(2)S synthesizing enzymes restored endogenous H(2)S level and redox state in the heart and aorta tissues. Under these conditions, the following indicators of oxidative stress were significantly decreased in heart and aorta tissues: superoxide generation rate (·0(2)(-)) and hydroxyl (·OH) anion radicals, compared with significantly elevated levels of these parameters in old animals. We also found the reduction of non-enzymatic (diene conjugates and malonic dialdehyde) and enzymatic (uric acid, LTC(4) and TxB(2)) lipid oxidation products levels in old rats under H(2)S synthesis stimulation that confirms the restriction of oxidative stress. An important consequence of endogenous synthesis stimulation of hydrogen sulfide during aging is a decrease of nitrozative stress, such as iNOS activity and nitrate reductase, as well as recovery of constitutive NO synthase activity, indicating the importance of this gas transmitter in cardiovascular system. Thus, stimulation of hydrogen sulfide endogenous synthesis contributed to reduced production of reactive oxygen species (oxidative stress) and nitrogen (nitrozative stress) in heart and aorta tissues with aging. The presence of a pronounced antioxidant effect and modulating influence of pyridoxal-5- phosphate in the redox state of heart tissue and blood vessels during aging suggests cardioprotective properties of the substance and prospects for future research.

Download full-text PDF

Source
http://dx.doi.org/10.15407/fz63.01.003DOI Listing

Publication Analysis

Top Keywords

hydrogen sulfide
16
redox state
12
state heart
12
nitrozative stress
12
heart aorta
12
aorta tissues
12
oxidative stress
12
blood vessels
8
cardiovascular system
8
synthesis stimulation
8

Similar Publications

The lactic acid bacterial (LAB) species have proven multifaceted roles in sustainable agriculture due to their biologically safe nature, making them eco-friendly. However, their plant growth-improving mechanisms in stressed and non-stressed conditions are still under consideration. Thus, the current work has been planned to evaluate the drought tolerance potential and plant growth-promoting (PGP) traits of Loigolactobacillus coryniformis BCH-4 in Zea mays L.

View Article and Find Full Text PDF

A cytochrome repressed by a MarR family regulator confers resistance to metals, nitric oxide, sulfide, and cyanide in .

Appl Environ Microbiol

January 2025

Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.

Unlabelled: is a ubiquitous environmental pathogen. Despite its remarkable adaptability, little is known about the mechanisms of stress resistance in this bacterium. Here, in a screen for iron-susceptible transposon mutants, we identified a cytochrome that protects against multiple stresses.

View Article and Find Full Text PDF

Novel role of FTO in regulation of gut-brain communication via -produced hydrogen sulfide under arsenic exposure.

Gut Microbes

December 2025

Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.

Fat mass and obesity-associated protein (FTO) is the key demethylase that reverses the abnormally altered N6-methyladenosine (m6A) modification in eukaryotic cells under environmental pollutants exposure. Arsenic is an environmental metalloid and can cause severe symptoms in human mainly through drinking water. However, there is no specific treatment for its toxic effects due to the uncovered mechanisms.

View Article and Find Full Text PDF

SPR Biosensor Based on Bilayer MoS for SARS-CoV-2 Sensing.

Biosensors (Basel)

January 2025

INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy.

The COVID-19 pandemic has highlighted the urgent need for rapid, sensitive, and reliable diagnostic tools for detecting SARS-CoV-2. In this study, we developed and optimized a surface plasmon resonance (SPR) biosensor incorporating advanced materials to enhance its sensitivity and specificity. Key parameters, including the thickness of the silver layer, silicon nitride dielectric layer, molybdenum disulfide (MoS) layers, and ssDNA recognition layer, were systematically optimized to achieve the best balance between sensitivity, resolution, and attenuation.

View Article and Find Full Text PDF

Theranostic Contact Lens for Ocular Cystinosis Utilizing Gold Nanoparticles.

Biosensors (Basel)

January 2025

Department of Optometry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea.

Ocular cystinosis is a disease in which accumulated cystine crystals cause damage to the eyes, necessitating timely treatment and ongoing monitoring of cystine levels. The current treatment involves frequent administration of cysteamine eye drops, which suffer from low bioavailability and can lead to drug toxicity, making it essential to prescribe an appropriate dosage based on the patient's condition. Additionally, cystine crystal levels are typically assessed subjectively via slit-lamp examination, requiring frequent clinical visits and causing discomfort for the patient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!