A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineering a Protein Binder Specific for p38α with Interface Expansion. | LitMetric

Protein binding specificities can be manipulated by redesigning contacts that already exist at an interface or by expanding the interface to allow interactions with residues adjacent to the original binding site. Previously, we developed a strategy, called AnchorDesign, for expanding interfaces around linear binding epitopes. The epitope is embedded in a loop of a scaffold protein, in our case a monobody, and then surrounding residues on the monobody are optimized for binding using directed evolution or computational design. Using this strategy, we have increased binding affinities by >100-fold, but we have not tested whether it can be used to control protein binding specificities. Here, we test whether AnchorDesign can be used to engineer a monobody that binds specifically to the mitogen-activated protein kinase (MAPK) p38α but not to the related MAPKs ERK2 and JNK. To anchor the binding interaction, we used a small (D) docking motif from the mitogen-activated protein kinase kinase (MAP2K) MKK6 that interacts with similar affinity with p38α and ERK2. Our hypothesis was that by embedding the motif in a larger protein that we could expand the interface and create contacts with residues that are not conserved between p38α and ERK2. Molecular modeling was used to inform insertion of the D motif into the monobody, and a combination of phage and yeast display were used to optimize the interface. Binding experiments demonstrate that the engineered monobody binds to the target surface on p38α and does not exhibit detectable binding to ERK2 or JNK.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776472PMC
http://dx.doi.org/10.1021/acs.biochem.8b00408DOI Listing

Publication Analysis

Top Keywords

binding
9
protein binding
8
binding specificities
8
monobody binds
8
mitogen-activated protein
8
protein kinase
8
erk2 jnk
8
p38α erk2
8
protein
6
p38α
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!