A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermoelectric Performance of IV-VI Compounds with Octahedral-Like Coordination: A Chemical-Bonding Perspective. | LitMetric

Thermoelectric materials provide a challenge for materials design, since they require optimization of apparently conflicting properties. The resulting complexity has favored trial-and-error approaches over the development of simple and predictive design rules. In this work, the thermoelectric performance of IV-VI chalcogenides on the tie line between GeSe and GeTe is investigated. From a combination of optical reflectivity and electrical transport measurements, it is experimentally proved that the outstanding performance of IV-VI compounds with octahedral-like coordination is due to the anisotropy of the effective mass tensor of the relevant charge carriers. Such an anisotropy enables the simultaneous realization of high Seebeck coefficients, due to a large density-of-states effective mass, and high electrical conductivity, caused by a small conductivity effective mass. This behavior is associated to a unique bonding mechanism by means of a tight-binding model, which relates band structure and bond energies; tuning the latter enables tailoring of the effective mass tensor. The model thus provides atomistic design rules for thermoelectric chalcogenides.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201801787DOI Listing

Publication Analysis

Top Keywords

effective mass
16
performance iv-vi
12
thermoelectric performance
8
iv-vi compounds
8
compounds octahedral-like
8
octahedral-like coordination
8
design rules
8
mass tensor
8
thermoelectric
4
coordination chemical-bonding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!