Dasatinib induces gene expression of CYP1A1, CYP1B1, and cardiac hypertrophy markers (BNP, β-MHC) in rat cardiomyocyte H9c2 cells.

Toxicol Mech Methods

a Department of Pharmacology and Toxicology, College of Pharmacy , King Saud University, Riyadh , Saudi Arabia.

Published: November 2018

Dasatinib is a new selective tyrosine kinase inhibitor that targets certain kinases involved in cellular growth and development. This drug belongs to a novel anticancer therapy aiming to increase the survival in patients with imatinib-resistant mutations. However, the dasatinib toxicity was reported as a side effect leading to arrhythmias and/or heart failure. Here, we investigated the possibility of dasatinib-induced toxicity in rat cardiomyocyte H9c2 cells. Our objectives were to investigate the ability of dasatinib to induce expression of cytochrome P450 (CYP1A1, CYP1B1) and cardiac hypertrophy markers (BNP, β-MHC) genes in H9c2 cells. To test this hypothesis, H9c2 cells were incubated with dasatinib at two concentrations (20 and 40 μM). Thereafter, CYP1A1, CYP1B1, BNP, and β-MHC were determined at gene expression level. Our findings showed that dasatinib induces the CYP1A1, CYP1B1, BNP, and β-MHC mRNA. The involvement of AhR/CYP1A1 pathway in dasatinib toxicity was tested by resveratrol (RES), an AhR antagonist. Interestingly, the increase in mRNA of different genes by dasatinib was not affected by RES, which confirms that these effects are not mediated through AhR. In addition, this was accompanied by a significant inhibition of constitutive expression of these genes by RES. The current work provides the first evidence for the ability of dasatinib to induce hypertrophic markers in H9c2 cells through AhR-independent pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15376516.2018.1497746DOI Listing

Publication Analysis

Top Keywords

h9c2 cells
20
cyp1a1 cyp1b1
16
bnp β-mhc
16
dasatinib
9
dasatinib induces
8
gene expression
8
cyp1b1 cardiac
8
cardiac hypertrophy
8
hypertrophy markers
8
markers bnp
8

Similar Publications

The AlO: Cr light-converting materials were successfully synthesized via co-precipitation, resulting in a grain size ranging from 100 to 400 nm. Under excitation wavelengths spanning from 360 to 650 nm, a distinct near-infrared (NIR) emission at 695 nm was observed. Through optimization, it has been established that a Cr doping concentration of 1.

View Article and Find Full Text PDF

Ischemia-reperfusion (I/R) injury is a significant clinical problem impacting the heart and other organs, such as the kidneys and liver. This study explores the protective effects of oxycodone on myocardial I/R injury and its underlying mechanisms. Using a myocardial I/R model in Sprague-Dawley (SD) rats and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in H9c2 cells, we administered oxycodone and inhibited AMP-activated protein kinase (AMPK) with Compound C (C.

View Article and Find Full Text PDF

Cardiotoxic effect of Doxorubicin (Dox) limits its clinical application. Previously, we reported that Dox induces phosphorylation of lamin A/C (pS22 lamin A/C), increased nuclear size, damage to the nuclear membrane, and cell death. However, the activation of signalling pathway during this event remains elusive, and it is unclear whether increased phospho-lamin A/C activates the cell death pathway in heart.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Syringaldehyde Alleviates Cardiac Hypertrophy Induced by Hyperglycemia in H9c2 Cells Through GLP-1 Receptor Signals.

Pharmaceuticals (Basel)

January 2025

Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan.

Cardiac hypertrophy is a significant complication of diabetes, often triggered by hyperglycemia. Glucagon-like peptide-1 (GLP-1) receptor agonists alleviate cardiac hypertrophy, but their efficacy diminishes under GLP-1 resistance. Syringaldehyde (SA), a natural phenolic compound, may activate GLP-1 receptors and mitigate hypertrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!