Although higher intakes of dairy milk are associated with a lower risk of metabolic syndrome (MetS), the underlying protective mechanism remains unclear. This study investigated the dynamic metabolic profile shift following the ingestion of low-fat milk or an isocaloric volume of rice milk in obese individuals with metabolic syndrome (MetS). In a randomized, double-blind, crossover study, postprandial plasma samples ( n = 266) were collected from 19 MetS participants. Plasma samples were analyzed by a targeted metabolomics platform which specifically detects 117 metabolites from 25 metabolic pathways. The comprehensive time-course metabolic profiling in MetS participants indicated that the postprandial metabolic profiles distinguish low-fat milk and rice milk consumption in a time-dependent manner. Metabolic biomarkers, such as orotate, leucine/isoleucine and adenine, showed significantly different trends in the two test beverages. Bayesian statistics identified 12 metabolites associated with clinical characteristics of postprandial vascular endothelial function, such as flow-mediated dilation (FMD), postprandial plasma markers of oxidative stress and NO status. Furthermore, metabolic pathway analysis based on these metabolite data indicated the potential utility of metabolomics to provide mechanistic insights of dietary interventions to regulate postprandial metabolic excursions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.8b00315DOI Listing

Publication Analysis

Top Keywords

postprandial metabolic
12
metabolic syndrome
12
metabolic
11
obese individuals
8
individuals metabolic
8
syndrome mets
8
low-fat milk
8
rice milk
8
postprandial plasma
8
plasma samples
8

Similar Publications

Introduction: Artificial lighting at night (ALAN) leads to pervasive light pollution, affecting ecosystems and human health globally. Satellite assessments reveal widespread nocturnal illumination worldwide and research indicates adverse health effects. Environmental light pollution disrupts natural cycles, affecting the behavior and reproduction of various organisms.

View Article and Find Full Text PDF

Bone is a dynamic tissue continuously undergoing remodelling processes of resorption and formation to maintain bone mass and health. Food intake and the release of the gut-derived incretin hormones including glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) as well as its 'sister hormone' glucagon-like peptide 2 (GLP-2), appear to regulate bone turnover processes in the postprandial state as part of the so-called gut-bone axis. The effects of these gut hormones on bone metabolism depend on their circulating concentrations.

View Article and Find Full Text PDF

Background: Corticosteroids are used routinely in horses and induce insulin dysregulation (ID). Nutrition is important for ID management and includes low nonstructural carbohydrate (NSC) diets and, often, high-protein ration balancers (RB). Insulin and incretin secretion increase after high-protein meals; corticosteroids may influence these effects.

View Article and Find Full Text PDF

The second meal effect describes an improved glycemic response observed after consuming a second identical meal. We previously showed that morning (AM) exposure to hyperinsulinemia primes the liver for enhanced hepatic glucose uptake and glycogen storage in the afternoon (PM), with no significant effect on PM non-hepatic glucose uptake. Given that meals often trigger both insulin and glucagon secretion, we aimed to determine if AM hyperglucagonemia alters the priming effect of AM hyperinsulinemia on PM hepatic glucose metabolism.

View Article and Find Full Text PDF

Regulation of LEAP2 by insulin and glucagon in mice and humans.

Cell Rep Med

March 2025

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Liver-expressed antimicrobial peptide 2 (LEAP2) is an endogenous antagonist and inverse agonist of the ghrelin receptor, countering ghrelin's effects on cell signaling and feeding. However, despite an emerging interest in LEAP2's physiology and pharmacology, its endocrine regulation remains unclear. Here, we report that plasma LEAP2 levels decrease significantly upon glucagon infusions during somatostatin clamps in humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!