The striatum constitutes the cortical-basal ganglia loop and receives input from the cerebral cortex. Previous MRI studies have parcellated the human striatum using clustering analyses of structural/functional connectivity with the cerebral cortex. However, it is currently unclear how the striatal regions functionally interact with the cerebral cortex to organize cortical functions in the temporal domain. In the present human functional MRI study, the striatum was parcellated using boundary mapping analyses to reveal the fine architecture of the striatum by focusing on local gradient of functional connectivity. Boundary mapping analyses revealed approximately 100 subdivisions of the striatum. Many of the striatal subdivisions were functionally connected with specific combinations of cerebrocortical functional networks, such as somato-motor (SM) and ventral attention (VA) networks. Time-resolved functional connectivity analyses further revealed coherent interactions of multiple connectivities between each striatal subdivision and the cerebrocortical networks (i.e., a striatal subdivision-SM connectivity and the same striatal subdivision-VA connectivity). These results suggest that the striatum contains a large number of subdivisions that mediate functional coupling between specific combinations of cerebrocortical networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6220841PMC
http://dx.doi.org/10.1002/hbm.24275DOI Listing

Publication Analysis

Top Keywords

cerebrocortical networks
12
cerebral cortex
12
striatal subdivisions
8
boundary mapping
8
mapping analyses
8
functional connectivity
8
analyses revealed
8
specific combinations
8
combinations cerebrocortical
8
striatal
6

Similar Publications

Sex-specific associations between maternal prenatal inflammation and offspring cortical morphology in youth: A harmonised study across four birth cohorts.

Brain Behav Immun

January 2025

Research Unit of Clinical Medicine, Department of Psychiatry, University of Oulu, Oulu, Finland; Department of Psychiatry, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland. Electronic address:

Article Synopsis
  • Maternal immune activation (MIA) during pregnancy may contribute to psychiatric disorders in children, but its effects on brain development and sex differences are not fully understood.
  • A study analyzed data from 2,635 mother-child pairs to explore how maternal levels of CRP, a marker of inflammation, correlate with offspring brain structure, focusing on cortical thickness, surface area, and volume.
  • Findings reveal that normal maternal CRP levels show different effects on brain development in boys and girls, while higher CRP levels are linked to changes in brain structure in both sexes, highlighting the importance of sex and inflammation in neurodevelopment.
View Article and Find Full Text PDF

MEF2C is a critical transcription factor in neurodevelopment, whose loss-of-function mutation in humans results in MEF2C haploinsufficiency syndrome (MHS), a severe form of autism spectrum disorder (ASD)/intellectual disability (ID). Despite prior animal studies of MEF2C heterozygosity to mimic MHS, MHS-specific mutations have not been investigated previously, particularly in a human context as hiPSCs afford. Here, for the first time, we use patient hiPSC-derived cerebrocortical neurons and cerebral organoids to characterize MHS deficits.

View Article and Find Full Text PDF

Vitamin D deficiency contributes to the pathogenesis of age-related cerebrovascular diseases, including ischemic stroke. Sex hormonal status may also influence the prevalence of these disorders, indicated by a heightened vulnerability among postmenopausal and hyperandrogenic women. To investigate the potential interaction between sex steroids and disrupted vitamin D signaling in the cerebral microcirculation, we examined the cerebrovascular adaptation to unilateral carotid artery occlusion (CAO) in intact, ovariectomized, and hyperandrogenic female mice with normal or functionally inactive vitamin D receptor (VDR).

View Article and Find Full Text PDF

Oxygen transfer from blood vessels to cortical brain tissue is representative of a class of problems with mixed-domain character. Large-scale efficient computation of tissue oxygen concentration is dependent on the manner in which the tubular network of blood vessels is coupled to the tissue mesh. Models which explicitly resolve the interface between the tissue and vasculature with a contiguous mesh are prohibitively expensive for very dense cerebral microvasculature.

View Article and Find Full Text PDF

Objective: We aimed to investigate the effects and mechanisms of swallowing-related brain regions using resting-state functional magnetic resonance imaging (rs-fMRI) in healthy subjects who underwent intermittent theta burst stimulation (iTBS) on dominant or non-dominant cerebellar hemispheres.

Methods: Thirty-nine healthy subjects were randomized into three groups that completed different iTBS protocols (dominant cerebellum group, non-dominant cerebellum group and sham group). Before iTBS, the resting motor threshold (rMT) was measured by single-pulse transcranial magnetic stimulation (sTMS) on the cerebellar representation of the suprahyoid muscles, and the dominant cerebellar hemisphere for swallowing was determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!