A pathological feature in atherosclerosis is the dysfunction and death of vascular endothelial cells (EC). Oxidized low-density lipoprotein (LDL), known to accumulate in the atherosclerotic arterial walls, impairs endothelium-dependent relaxation and causes EC apoptosis. A major bioactive ingredient of the oxidized LDL is lysophosphatidylcholine (LPC), which at higher concentrations causes apoptosis and necrosis in various EC. There is hitherto no report on LPC-induced cytotoxicity in brain EC. In this work, we found that LPC caused cytosolic Ca overload, mitochondrial membrane potential decrease, p38 activation, caspase 3 activation and eventually apoptotic death in mouse cerebral bEND.3 EC. In contrast to reported reactive oxygen species (ROS) generation by LPC in other EC, LPC did not trigger ROS formation in bEND.3 cells. Pharmacological inhibition of p38 alleviated LPC-inflicted cell death. We examined whether heparin could be cytoprotective: although it could not suppress LPC-triggered Ca signal, p38 activation and mitochondrial membrane potential drop, it did suppress LPC-induced caspase 3 activation and alleviate LPC-inflicted cytotoxicity. Our data suggest LPC apoptotic death mechanisms in bEND.3 might involve mitochondrial membrane potential decrease and p38 activation. Heparin is protective against LPC cytotoxicity and might intervene steps between mitochondrial membrane potential drop/p38 activation and caspase 3 activation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/fcp.12399DOI Listing

Publication Analysis

Top Keywords

mitochondrial membrane
16
membrane potential
16
p38 activation
12
caspase activation
12
endothelial cells
8
potential decrease
8
decrease p38
8
activation caspase
8
apoptotic death
8
activation
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!