The prediction of vegetation responses to climate requires a knowledge of how climate-sensitive plant traits mediate not only the responses of individual plants, but also shifts in the species and functional compositions of whole communities. The emission of isoprene gas - a trait shared by one-third of tree species - is known to protect leaf biochemistry under climatic stress. Here, we test the hypothesis that isoprene emission shapes tree species compositions in tropical forests by enhancing the tolerance of emitting trees to heat and drought. Using forest inventory data, we estimated the proportional abundance of isoprene-emitting trees (pIE) at 103 lowland tropical sites. We also quantified the temporal composition shifts in three tropical forests - two natural and one artificial - subjected to either anomalous warming or drought. Across the landscape, pIE increased with site mean annual temperature, but decreased with dry season length. Through time, pIE strongly increased under high temperatures, and moderately increased following drought. Our analysis shows that isoprene emission is a key plant trait determining species responses to climate. For species adapted to seasonal dry periods, isoprene emission may tradeoff with alternative strategies, such as leaf deciduousness. Community selection for isoprene-emitting species is a potential mechanism for enhanced forest resilience to climatic change.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.15304DOI Listing

Publication Analysis

Top Keywords

isoprene emission
16
responses climate
12
tree species
8
tropical forests
8
pie increased
8
species
6
isoprene
5
emission structures
4
tropical
4
structures tropical
4

Similar Publications

[This corrects the article DOI: 10.3389/fpls.2023.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) notably influence air quality, climate and secondary pollutant formation, particularly regions in where urban emissions interact with natural biogenic sources at the interface of urban and natural ecosystems. This study examined the VOC profiles in the Sakaerat dry evergreen forest and the urban area of Nakhon Ratchasima, Thailand, throughout 2023, focusing on seasonal and spatial variations in biogenic and anthropogenic VOCs (BVOCs and AVOCs, respectively). Hydrocarbons, mainly alkanes, dominated VOC compositions, contributing 43.

View Article and Find Full Text PDF

Arctic haze has attracted considerable scientific interest for decades. However, limited studies have focused on the molecular composition of atmospheric particulate matter that contributes to Arctic haze. Our study collected atmospheric particles at Alert in the Canadian high Arctic from mid-February to early May 2000.

View Article and Find Full Text PDF

Kamchatka (southeastern Siberia) ice core records of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls since 1690s: A signal for the tropospheric oxidizing capacity.

Sci Total Environ

December 2024

Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan; Chubu Institute for Advanced Studies, Chubu University, Kasugai, Japan. Electronic address:

There has been much interest about how to identify an ice core signal for oxidizing capacity of the troposphere. This study broadly explains the air-snow transfer/deposition process using ice core records of dicarboxylic (DCAs), ω-oxocarboxylic as well as pyruvic acids and α-dicarbonyls, which are potentially formed by atmospheric oxidation of aromatic hydrocarbons from the continent, incloud-oxidation of isoprene and unsaturated fatty acids from the western North Pacific. An ice core (~152 m long, 304 years) was collected at an ice cap on the Gorshkov crater at the summit of Ushkovsky (56° 04'N, 160° 28'E, altitude: 3903 m) in the Kamchatka Peninsula from southeastern Siberia.

View Article and Find Full Text PDF

New particle formation (NPF) in the tropical upper troposphere is a globally important source of atmospheric aerosols. It is known to occur over the Amazon basin, but the nucleation mechanism and chemical precursors have yet to be identified. Here we present comprehensive in situ aircraft measurements showing that extremely low-volatile oxidation products of isoprene, particularly certain organonitrates, drive NPF in the Amazonian upper troposphere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!