Environmental assessment concerning trace metals and ecological risks at Guanabara Bay, RJ, Brazil.

Environ Monit Assess

Instituto de Geociências, Departamento de Geologia e Geofísica Marinha, Universidade Federal Fluminense, Avenida General Milton Tavares de Souza, s/n, Niterói, RJ, 24210346, Brazil.

Published: July 2018

Three-stage sequential extraction BCR was applied to surface sediments from the west part of Guanabara Bay to assess the mobility of Zn, Cu, Pb, Ni, Cr, and Mn. Results were satisfactory for the analysis of certificate standard material (BCR 701), with recoveries between 71 (Cu) and 123% (Cr). Evaluation of organic matter composition classified the area as eutrophic (CHO:PRT > 1), with aged organic detritus at some stations. Zn exhibited by far the greatest bioavailability, with 43.49% of its concentrations associated with the exchangeable fraction. Cu and Cr showed stronger affinity for organic matter, with 51.18 and 48.73% of their concentrations, respectively, bounded to the oxidizable fraction. Pb presented higher concentrations in the reducible fraction (45.41%). The strongest lithogenic contribution was shown by Ni (31.91%) and Mn (35.44%). PCA clearly showed the determinant role of organic matter and fine sediments in the distribution of metals in the study area and also a common source for these elements, with the exception of Cu. Risk Assessment Code (RAC) established Zn as the most concerning element in the study area. The decreasing mobility order, based on the sum of the three extractable fractions of BCR, was Pb > Cu > Cr > Zn > Ni > Mn. The comparison of the results with sediments quality guidelines (SQG) proved fractionation to be mandatory in the evaluation of effective ecological risk concerning trace elements in sediments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-018-6833-xDOI Listing

Publication Analysis

Top Keywords

organic matter
12
concerning trace
8
guanabara bay
8
study area
8
environmental assessment
4
assessment concerning
4
trace metals
4
metals ecological
4
ecological risks
4
risks guanabara
4

Similar Publications

Guarding Drinking Water Safety against Harmful Algal Blooms: Could UV/Cl Treatment Be the Answer?

Environ Sci Technol

January 2025

Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States.

Frequent and severe occurrences of harmful algal blooms increasingly threaten human health by the release of microcystins (MCs). Urgent attention is directed toward managing MCs, as evidenced by rising HAB-related do not drink/do not boil advisories due to unsafe MC levels in drinking water. UV/chlorine treatment, in which UV light is applied simultaneously with chlorine, showed early promise for effectively degrading MC-LR to values below the World Health Organization's guideline limits.

View Article and Find Full Text PDF

A butterfly-shaped acceptor with rigid skeleton and unique assembly enables both efficient organic photovoltaics and high-speed organic photodetectors.

Natl Sci Rev

January 2025

State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China.

It remains challenging to design efficient bifunctional semiconductor materials in organic photovoltaic and photodetector devices. Here, we report a butterfly-shaped molecule, named WD-6, which exhibits low energy disorder and small reorganization energy due to its enhanced molecular rigidity and unique assembly with strong intermolecular interaction. The binary photovoltaic device based on PM6:WD-6 achieved an efficiency of 18.

View Article and Find Full Text PDF

Soda lakes are unique double-extreme habitats characterized by high salinity and soluble carbonate alkalinity, yet harboring rich prokaryotic life. Despite intensive microbiology studies, little is known about the identity of the soda lake hydrolytic bacteria responsible for the primary degradation of the biomass organic matter, in particular cellulose. In this study, aerobic and anaerobic enrichment cultures with three forms of native insoluble cellulose inoculated with sediments from five soda lakes in south-western Siberia resulted in the isolation of four cellulotrophic haloalkaliphilic bacteria and their four saccharolytic satellites.

View Article and Find Full Text PDF

Phenol-Quinone Redox Couples of Natural Organic Matter Promote Mercury Methylation in Paddy Soil.

Environ Sci Technol

January 2025

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.

Methylmercury in paddy soils poses threats to food security and thus human health. Redox-active phenolic and quinone moieties of natural organic matter (NOM) mediate electron transfer between microbes and mercury during mercury reduction. However, their role in mercury methylation remains elusive.

View Article and Find Full Text PDF

High Molecular-Weight Organics as Precursors for Toxic Iodinated Disinfection Byproducts during Chloramination.

Environ Sci Technol

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Iodinated DBPs (I-DBPs), many more toxic than regulated chlorinated and/or brominated DBPs, are a major challenge in the supply of safe drinking water. While over 800 DBPs have been identified, the occurrence and precursors of toxic I-DBPs remain poorly understood. Herein, natural organic matter from two raw drinking waters was fractionated using ultrafiltration membranes into different groups based on molecular weight (MW).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!