Rapid "turn-on" photoluminescence detection of bisulfite in wines and living cells with a formyl bearing bis-cyclometalated Ir(iii) complex.

Analyst

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.

Published: July 2018

AI Article Synopsis

  • A new photoluminescence probe, [Ir(ppy)2phen-CHO]+PF6- (probe 1), is developed for the selective detection of bisulfite anions (HSO3-).
  • The probe shows significant increases in photoluminescence in response to HSO3- and can accurately measure concentrations as low as 0.3 μM.
  • Probe 1 is effective in real-world applications, successfully detecting HSO3- in white wines and allowing for bioimaging in living cells, suggesting its potential for broader biosystem studies.

Article Abstract

A new photoluminescence (PL) probe based on a formyl bearing bis-cyclometalated Ir(iii) complex, [Ir(ppy)2phen-CHO]+PF6- (1), is synthesized and applied to the selective detection of a bisulfite anion (HSO3-). Probe 1 is prepared using 2-phenylpyridine (ppy) as the C^N main ligand and 1,10-phenanthroline-5-carboxaldehyde (phen-CHO) as the N^N ancillary ligand. Probe 1 displayed excellent selective PL enhancement in response to HSO3- in acetic acid-sodium acetate buffer solution (pH = 5.0). The increase of PL signal is directly proportional to the concentration of HSO3- in the range of 2 μM to 45 μM with a detection limit of 0.9 μM using 50 μM probe 1 and in the range of 0.5 μM to 6 μM with a detection limit of 0.3 μM using 10 μM probe 1. More importantly, probe 1 can respond to HSO3- rapidly within 40 s. Furthermore, probe 1 was successfully applied to detect HSO3- in real white wines and the bioimaging of HSO3- in living cells. The superior properties of probe 1 make it of great potential use for studying the effects of HSO3- in other biosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8an00640gDOI Listing

Publication Analysis

Top Keywords

μm μm
16
detection bisulfite
8
living cells
8
formyl bearing
8
bearing bis-cyclometalated
8
bis-cyclometalated iriii
8
iriii complex
8
probe
8
μm
8
range μm
8

Similar Publications

Autologous adipose tissue grafting (AAG) can provide soft tissue reconstruction in congenital defects, traumatic injuries, cancer care, or cosmetic procedures; over 94,000 AAG procedures are performed in the United States every year. Despite its effectiveness, the efficiency of AAG is limited by unpredictable adipocyte survival, impacting graft volume retention (26-83%). Acellular adipose matrices (AAMs) have emerged as a potential alternative to AAG.

View Article and Find Full Text PDF

Kaolinite is a single 2D layer of kaolin or metakaolin (MK), common clays that can be characterized as layered 3D materials. We show that because of its chemical composition, kaolinite can be converted into an amorphous 3D material by chemical means. This dimensional transformation is possible due to the large surface to volume ratio and chemical reactivity of kaolinite.

View Article and Find Full Text PDF

The initial investigation evaluates the feasibility of ultra high performance concrete (UHPC) as a material for reusable molds in aluminum casting. Two specific UHPC formulations were investigated: one based on ordinary Portland cement (OPC) and another utilizing alkali-activated materials (AAM). The study focused on investigating the surface through roughness measurements and the thermal durability through repeated casting cycles.

View Article and Find Full Text PDF

This study investigates the negative impact of climate change on water resources, specifically water for agricultural irrigation. It describes how to optimize swelling, gel properties and long-term water retention capacities of Na-CMC/PAAm hydrogels for managing drought stress of Sugar beet plants through techniques such as changing the composition, synthetic conditions and chemical modification. Gamma radiation-induced free radical copolymerization was used to synthesize superabsorbent hydrogels using sodium carboxymethyl cellulose (Na-CMC) and acrylamide (AAm).

View Article and Find Full Text PDF

A flexible wearable sensor based on the multiple interaction and synergistic effect of the hydrogel components with anti-freezing, low swelling for human motion detection and underwater communication.

Int J Biol Macromol

January 2025

School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Ministry of Education Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China. Electronic address:

To meet the increasing demand for wearable sensor in special environment such as low temperature or underwater, a multifunctional ionic conducting hydrogel (Gel/PSAA-Al hydrogel) with anti-freezing and low swelling for human motion detection and underwater communication was prepared using gelatin (Gel), [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA), acrylamide (AAm), acrylic acid (AAc), and AlCl. Due to reversible hydrogen bonding, electrostatic interactions and metal coordination crosslinking between the polymer networks, the resulting Gel/PSAA-Al hydrogels present low swelling property in water and exhibit large tensile properties (~1050 %), high tensile strength (~250 kPa) and excellent fatigue resistance. In addition, the hydration capacity of SBMA and AlCl endows the Gel/PSAA-Al hydrogel fantastic anti-freezing (-31.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!