Arteries and veins are specified by antagonistic transcriptional programs. However, during development and regeneration, new arteries can arise from pre-existing veins through a poorly understood process of cell fate conversion. Here, using single-cell RNA sequencing and mouse genetics, we show that vein cells of the developing heart undergo an early cell fate switch to create a pre-artery population that subsequently builds coronary arteries. Vein cells underwent a gradual and simultaneous switch from venous to arterial fate before a subset of cells crossed a transcriptional threshold into the pre-artery state. Before the onset of coronary blood flow, pre-artery cells appeared in the immature vessel plexus, expressed mature artery markers, and decreased cell cycling. The vein-specifying transcription factor COUP-TF2 (also known as NR2F2) prevented plexus cells from overcoming the pre-artery threshold by inducing cell cycle genes. Thus, vein-derived coronary arteries are built by pre-artery cells that can differentiate independently of blood flow upon the release of inhibition mediated by COUP-TF2 and cell cycle factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6053322PMC
http://dx.doi.org/10.1038/s41586-018-0288-7DOI Listing

Publication Analysis

Top Keywords

coronary arteries
12
cell fate
8
vein cells
8
blood flow
8
pre-artery cells
8
cell cycle
8
cells
7
arteries
5
cell
5
pre-artery
5

Similar Publications

Epicardial catheter ablation is necessary to address ventricular tachycardia targets located far from the endocardium, but epicardial adipose tissue and coronary blood vessels can complicate ablation. We demonstrate that catheter-based near-infrared spectroscopy (NIRS) can identify these obstacles to guide ablation. Eighteen human ventricles were mapped ex vivo using NIRS catheters with optical source-detector separations (SDSs) of 0.

View Article and Find Full Text PDF

Objectives: To explore the role of berberine (BBR) in ameliorating coronary endothelial cell injury in Kawasaki disease (KD) by regulating the complement and coagulation cascade.

Methods: Human coronary artery endothelial cells (HCAEC) were divided into a healthy control group, a KD group, and a BBR treatment group (=3 for each group). The healthy control group and KD group were supplemented with 15% serum from healthy children and KD patients, respectively, while the BBR treatment group received 15% serum from KD patients followed by the addition of 20 mmol/L BBR.

View Article and Find Full Text PDF

Diffuse coronary artery disease (CAD) impacts the immediate hemodynamic and clinical outcomes of percutaneous coronary intervention (PCI). We evaluated whether the diffuse pattern of CAD derived from angiographic Quantitative flow ratio (QFR) impacts the immediate hemodynamic outcome post-PCI and the medium term predicted vessel-oriented composite endpoint (VOCE). Paired pre-procedure QFRs were assessed in 503 patients and 1022 vessels in the Multivessel TALENT (MVT) trial.

View Article and Find Full Text PDF

Manifestations of human atherosclerosis across vascular beds.

JVS Vasc Insights

May 2024

Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University.

Objective: Atherosclerosis underlies the most common etiologies of mortality worldwide, resulting in nearly 10 million deaths annually. In atherosclerosis, inflammation, metabolic factors, and hemodynamics cause the accumulation of extracellular lipids and the formation of plaques in the tunica intima of specific arteries. Atherosclerotic plaques primarily form in the coronary and carotid arteries, the aorta, and the peripheral arteries of the lower extremities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!