Integration of different cyber-physical systems involves a development process that takes into account some solutions for intercommunicating and interoperating heterogeneous devices. Each device can be managed as a thing within the Internet-of-Things concept by using web technologies. In addition, a “thing” can be managed as an encapsulated component by applying component-based software engineering principles. Based on this context, we propose a solution for integrating heterogeneous systems using a specific component-based technology. Specifically, we focus on enabling the connection of different types of subsystems present in smart home solutions. This technology enables interoperability by applying a homogeneous component representation that provides communication features through web sockets, and by implementing gateways in proprietary network connections. Furthermore, our solution eases the extension of these systems by means of abstract representations of the architectures and devices that form part of them. The approach is validated through an example scenario with different subsystems of a smart home solution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068644 | PMC |
http://dx.doi.org/10.3390/s18072156 | DOI Listing |
Sensors (Basel)
January 2025
Department of Automation, "Dunarea de Jos" University of Galati, 800008 Galati, Romania.
This paper deals with a "digital twin" (DT) approach for processing, reprocessing, and scrapping (P/R/S) technology running on a modular production system (MPS) assisted by a mobile cyber-physical robotic system (MCPRS). The main hardware architecture consists of four line-shaped workstations (WSs), a wheeled mobile robot (WMR) equipped with a robotic manipulator (RM) and a mobile visual servoing system (MVSS) mounted on the end effector. The system architecture integrates a hierarchical control system where each of the four WSs, in the MPS, is controlled by a Programable Logic Controller (PLC), all connected via Profibus DP to a central PLC.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Advanced Institute of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si 16229, Gyeonggi-do, Republic of Korea.
According to South Korea's Ministry of Employment and Labor, approximately 25,000 construction workers suffered from various injuries between 2015 and 2019. Additionally, about 500 fatalities occur annually, and multiple studies are being conducted to prevent these accidents and quickly identify their occurrence to secure the golden time for the injured. Recently, AI-based video analysis systems for detecting safety accidents have been introduced.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Economics and Management, Russian University of Cooperation, 420034 Kazan, Russia.
The process of establishing relay protection and automation (RPA) settings for electric power systems (EPSs) entails complex calculations of operating modes. Traditionally, these calculations are based on symmetrical components, which require the building of equivalent circuits of various sequences. This approach can lead to errors both when identifying the operating modes and when modeling the RPA devices.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu PO Box 4500 90014 Finland
In this study, we show that on-chip grown, vertically aligned MoS films that are decorated with Ni(OH) catalyst are suitable materials to be applied as working electrodes in electrochemical sensing. The constructed sensors display a highly repeatable response to dopamine, used as a model analyte, in a large dynamic range from 1 μM to 1 mM with a theoretical detection limit of 0.1 μM.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science and Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
Urban parking management is a growing challenge with increasing vehicle numbers and limited parking space. Traditional methods often fail during peak hours, leading to inefficiencies, unauthorized usage, and revenue losses. For instance, a parking lot designed for 300 vehicles often exceeds 90% occupancy during peak times, creating congestion and billing inaccuracies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!