Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disorder, leading to end stage renal failure and kidney transplantation in its most serious form. The severity of the disease's manifestation depends on the genetic determination of ADPKD. The huge variability of different phenotypes (even within a single family) is not only modulated by the two main ADPKD genes (PKD1 and PKD2) but also by modifier genes and the whole genetic background.

Case Presentation: This is a report of an ADPKD family with co-inheritance of PKD1 and PKD2 pathogenic variants. The proband, with an extremely serious manifestation of ADPKD (the man was diagnosed in early childhood, and with end stage renal disease aged 23), underwent genetic analysis of PKD1 and PKD2, which revealed the presence of pathogenic mutations in both of these genes. The missense PKD2 mutation p.Arg420Gly came from the proband's father, with a mild ADPKD phenotype. The same mutation of the PKD2 gene and similar mild disease presentation were found in the proband's aunt (father's sister) and her son. The nonsense mutation p.Gln2196* within the PKD1 gene was probably inherited from the proband's mother, who died at the age of 45. It was only discovered post mortem, that the real cause of her death was kidney failure as a consequence of untreated ADPKD. Unfortunately, neither the DNA of the proband's mother nor the DNA of any other family members from this side of the pedigree were available for further examination. The proband underwent successful cadaveric kidney transplantation at the age of 24, and this replacement therapy lasted for the next 15 years.

Conclusions: Here, we present a first case of bilineal ADPKD inheritance in the Czech Republic. This report highlights the significant role of modifier genes in genetic determination of ADPKD, especially in connection with seriously deteriorated disease phenotypes. In our case, the modifying role is probably mediated by the PKD2 gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032778PMC
http://dx.doi.org/10.1186/s12882-018-0978-2DOI Listing

Publication Analysis

Top Keywords

pkd1 pkd2
16
adpkd
9
autosomal dominant
8
dominant polycystic
8
polycystic kidney
8
kidney disease
8
stage renal
8
kidney transplantation
8
genetic determination
8
determination adpkd
8

Similar Publications

Gene therapy in polycystic kidney disease: A promising future.

J Transl Int Med

December 2024

Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai 200003, China.

Polycystic kidney disease (PKD) is a genetic disorder marked by numerous cysts in the kidneys, progressively impairing renal function. It is classified into autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), with ADPKD being more common. Current treatments mainly focus on symptom relief and slowing disease progression, without offering a cure.

View Article and Find Full Text PDF

Mutations in coding sequence and abnormal PKD1 expression levels contribute to the development of autosomal-dominant polycystic kidney disease, the most common genetic disorder. Regulation of PKD1 expression by factors located in the promoter and 3´ UTR have been extensively studied. Less is known about its regulation by 5´ UTR elements.

View Article and Find Full Text PDF

The "secondhit" pathway is responsible for biallelic inactivation of many tumor suppressors, where a pathogenic germline allele is joined by somatic mutation of the remaining functional allele. The mechanisms are unresolved, but the human PKD1 tumor suppressor is a good experimental model for identifying the molecular determinants. Inactivation of PKD1 results in autosomal dominant polycystic kidney disease, a very common disorder characterized by the accumulation of fluid-filled cysts and end-stage renal disease.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD), a single-gene-inherited kidney disease, is a common cause of end-stage kidney disease (ESKD). The PKD1 gene mutation is the most common cause of ADPKD, accounting for approximately 78% of cases. ADPKD is characterized by the scattered distribution of multiple cysts in the renal parenchyma, ultimately leading to ESKD.

View Article and Find Full Text PDF

Renal ciliopathies are a genetically and phenotypically heterogeneous group of diseases characterized by cystic and dysplastic kidneys. The aim of this study was to investigate the correlation between genetic changes that cause renal ciliopathies and phenotypic outcomes. The study group consisted of 137 patients diagnosed with renal ciliopathy disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!