Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, a combined system of microneedles and a triboelectric nanogenerator (TENG) has been developed for drug delivery. A triboelectric device, which converts mechanical energy into alternating current (AC), was chosen to replace the electrophoresis (EP) effect. To directly generate triboelectricity from salmon deoxyribonucleic acid (SDNA)-based microneedles, a triboelectric series of SDNA film and chargeable polymers (polyimide and Teflon) was studied. The electrical output of the two charged polymers was compared to find a material that could be highly charged with SDNA. The electrical output was also compared as a function of the concentration of a drug embedded in the SDNA film, and the results confirmed that drug intercalation affected the carrier diffusion. The mechanical strength of the microneedles was assessed by histological analysis of their penetration into porcine cadaver skin. Furthermore, the output voltage of a system incorporating microneedles and TENG in cadaver skin, and in vitro drug release into gelatin were evaluated to examine potential application as an electrically active drug delivery system. The electrical output voltage of this system was ∼95 V. The mechanism of triboelectric perturbation to the skin has also been discussed. The system developed in this work is a new, facile approach toward effective drug delivery that replaces the existing EP method and expands the application of TENGs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8nr02192a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!