A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modelling performance and skeletal muscle adaptations with exponential growth functions during resistance training. | LitMetric

System theory is classically applied to describe and to predict the effects of training load on performance. The classic models are structured by impulse-type transfer functions, nevertheless, most biological adaptations display exponential growth kinetics. The aim of this study was to propose an extension of the model structure taking into account the exponential nature of skeletal muscle adaptations by using a genetic algorithm. Thus, the conventional impulse-type model was applied in 15 resistance trained rodents and compared with exponential growth-type models. Even if we obtained a significant correlation between actual and modelled performances for all the models, our data indicated that an exponential model is associated with more suitable parameters values, especially the time constants that correspond to the positive response to training. Moreover, positive adaptations predicted with an exponential component showed a strong correlation with the main structural adaptations examined in skeletal muscles, . hypertrophy (R = 0.87, 0.96 and 0.99, for type 1, 2A and 2X cross-sectional area fibers, respectively) and changes in fiber-type composition (R = 0.81 and 0.79, for type 1 and 2A fibers, respectively). Thus, an exponential model succeeds to describe both performance variations with relevant time constants and physiological adaptations that take place during resistance training.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02640414.2018.1494909DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
8
muscle adaptations
8
exponential growth
8
resistance training
8
exponential model
8
time constants
8
exponential
7
adaptations
6
modelling performance
4
performance skeletal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!