Effect of ultraviolet photofunctionalization of dental titanium implants on osseointegration.

J Zhejiang Univ Sci B

Department of Oral and Maxillofacial Surgery, Christian-Albrechts University at Kiel, Arnold-Heller-Straße 16, 24105, Kiel, Germany.

Published: July 2018

Objective: The aim of the current study was to evaluate the effect of ultraviolet (UV) photofunctionalization of dental titanium implants with exposure to the oral cavity on osseointegration in an animal model.

Methods: Forty-eight titanium implants (Camlog Conelog 4.3 mmx9.0 mm) were placed epicrestally into the edentulous jaws of three minipigs and implant stability was assessed by measuring the implant stability quotient (ISQ). Prior to implantation half of the implants were photofunctionalized with intense UV-light. After three months, the implants were exposed and ISQ was measured again. After six months of implant exposure, the minipigs were sacrificed and the harvested specimens were analyzed using histomorphometric, light, and fluorescence microscopy.

Main Results: Forty-two of 48 implants osseointegrated. The overall mean bone-implant contact area (BIC) was (64±22)%. No significant differences were found in BIC or ISQ value (multivariate analysis of variance (MANOVA), P>0.05) between implants with and without exposure to UV photofunctionalization.

Conclusions: No significant effects were observed on osseointegration of dental titanium implants nine months after exposure of UV photofunctionalization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052363PMC
http://dx.doi.org/10.1631/jzus.B1600505DOI Listing

Publication Analysis

Top Keywords

titanium implants
16
dental titanium
12
ultraviolet photofunctionalization
8
photofunctionalization dental
8
implants
8
implants exposure
8
implant stability
8
titanium
4
implants osseointegration
4
osseointegration objective
4

Similar Publications

Intracranial Hypotension Mechanism and Implant Retention Procedure for Patients With Titanium Mesh Exposure.

Oper Neurosurg (Hagerstown)

January 2025

Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Background And Objectives: The study aimed to investigate the potential pathogenesis and present an implant retention procedure for patients with titanium mesh exposure after cranioplasty.

Methods: The clinical data were obtained from 26 consecutive cases with titanium mesh exposure who underwent surgical treatment between 2018 and 2023. These patients' medical records, scalp photographs, operative notes, and outcomes were retrospectively analyzed.

View Article and Find Full Text PDF

Recent focus has shifted toward refining the soft tissue emergence profile to enhance aesthetics, support peri-implant health, and ensure long-term success. Traditionally, titanium stock healing abutments or chairside-customized abutments were used to shape peri-implant tissues and develop the emergence profile for implant-supported prostheses. However, advancements in digital dentistry now allow for more precise customization and increased treatment efficiency.

View Article and Find Full Text PDF

Construction and high-throughput screening of gradient nanowire coatings on titanium surface towards ameliorated osseointegration.

Mater Today Bio

February 2025

Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.

Surface nano-modification has emerged as an effective strategy to enhance osseointegration of titanium (Ti) implants. Despite its promise, rational optimization of surface nanomorphology for ameliorated osseointegration remains a significant challenge. Our research pioneering developed a one-step alkali etching technique to produce a gradient nanowire coating with continuously varied dimensions on Ti surfaces, which was subsequently served as a versatile platform for high-throughput screening of optimal dimensions to enhance osseointegration.

View Article and Find Full Text PDF

Molding Quality and Biological Evaluation of a Two-Stage Titanium Alloy Dental Implant Based on Combined 3D Printing and Subtracting Manufacturing.

ACS Omega

December 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, Shaanxi, P. R. China.

Metal 3D printing has been used in the manufacturing of dental implants. Its technical advantages include high material utilization and the capacity to form arbitrarily complex structures. However, 3D printing alone is insufficient for manufacturing two-stage titanium implants due to the limited precision in printing titanium alloy parts.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the antibacterial effects of tantalum-copper (Ta-Cu) coatings on titanium alloys to combat infections from orthopedic and dental implants.
  • The coatings were created with different copper percentages and subjected to various thermal treatments, with the TaCu-2 sample (∼10 wt% copper, annealed at 600 °C) showing the best antibacterial performance.
  • Optimizing the copper content and annealing temperature was found to be crucial in improving the antibacterial properties of these coatings, suggesting their potential for reducing implant-related infections.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!