Natural wood possesses a unique 3D microstructure containing hierarchical interconnected channels along its growth direction. This study reports a facile processing strategy to utilize such structure to fabricate carbon/silicone composite based flexible pressure sensors. The unique contribution of the multichannel structure on the sensor performance is analyzed by comparing the pressure response of the vertically cut and horizontally cut composite structures. The results show that the horizontally cut composite based sensors exhibit much higher sensitivity (10.74 kPa ) and wider linear region (100 kPa, R = 99%), due to their rough surface and largely deformable microstructure. Besides, the sensors also show little hysteresis and good cycle stability. The overall outstanding sensing properties of the sensors allow for accurate continuous measurement of human pulse and respiration, benefiting the real-time health signal monitoring and disease diagnoses.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201801520DOI Listing

Publication Analysis

Top Keywords

composite based
8
horizontally cut
8
cut composite
8
wood derived
4
derived composites
4
composites high
4
high sensitivity
4
sensitivity wide
4
wide linear-range
4
linear-range pressure
4

Similar Publications

The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.

View Article and Find Full Text PDF

Formation of Nanowindow between Graphene Oxide and Carbon Nanohorn Assisted by Metal Ions.

Langmuir

January 2025

Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.

This study presents a novel nanostructured material formed by inserting oxidized carbon nanohorns (CNHox) between layered graphene oxide (GO) nanosheets using metal ions (M) from nitrate as intermediates. The resulting GO-CNHox-M structure effectively mitigated interlayer aggregation of the GO nanosheets. This insertion strategy promoted the formation of nanowindows on the surface of the GO sheets and larger mesopores between the GO nanosheets, improving material porosity.

View Article and Find Full Text PDF

Flexible Tactile Sensors with Self-Assembled Cilia Based on Magnetoelectric Composites.

ACS Appl Mater Interfaces

January 2025

School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.

Traditional tactile sensors are single-function, and it is difficult to meet the needs of applications in complex environments. This paper describes the development and applications of flexible tactile sensors with cilia based on magnetoelectric composites made of neodymium iron boron (NdFeB) microparticles with a silver (Ag) nanoshell in polydimethylsiloxane (PDMS). These sensors adopt the inherent magnetism of NdFeB microparticles and the excellent conductivity of the Ag coating.

View Article and Find Full Text PDF

Objective: To investigate the effect of cervical margin relocation with four different injectable restorative materials on the fracture resistance of molars receiving mesio-occluso-distal CAD/CAM nanoceramic onlay restorations.

Materials And Methods: One hundred and five sound mandibular molars received a standardized mesio-occluso-distal onlay preparation, with cervical margins located 2 mm apical to the cemento-enamel junction. The molars were randomly allocated into five groups (n = 21) according to the cervical relocating materials used: Group I had no cervical margin relocation; Group II used a highly viscous glass ionomer; Group III used a highly-filled injectable resin composite; Group IV used a resin-modified glass ionomer; and Group V used a bioactive ionic resin.

View Article and Find Full Text PDF

In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!