A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The evolutionary origins of pesticide resistance. | LitMetric

The evolutionary origins of pesticide resistance.

Biol Rev Camb Philos Soc

Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 4SE, U.K.

Published: February 2019

Durable crop protection is an essential component of current and future food security. However, the effectiveness of pesticides is threatened by the evolution of resistant pathogens, weeds and insect pests. Pesticides are mostly novel synthetic compounds, and yet target species are often able to evolve resistance soon after a new compound is introduced. Therefore, pesticide resistance provides an interesting case of rapid evolution under strong selective pressures, which can be used to address fundamental questions concerning the evolutionary origins of adaptations to novel conditions. We ask: (i) whether this adaptive potential originates mainly from de novo mutations or from standing variation; (ii) which pre-existing traits could form the basis of resistance adaptations; and (iii) whether recurrence of resistance mechanisms among species results from interbreeding and horizontal gene transfer or from independent parallel evolution. We compare and contrast the three major pesticide groups: insecticides, herbicides and fungicides. Whilst resistance to these three agrochemical classes is to some extent united by the common evolutionary forces at play, there are also important differences. Fungicide resistance appears to evolve, in most cases, by de novo point mutations in the target-site encoding genes; herbicide resistance often evolves through selection of polygenic metabolic resistance from standing variation; and insecticide resistance evolves through a combination of standing variation and de novo mutations in the target site or major metabolic resistance genes. This has practical implications for resistance risk assessment and management, and lessons learnt from pesticide resistance should be applied in the deployment of novel, non-chemical pest-control methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378405PMC
http://dx.doi.org/10.1111/brv.12440DOI Listing

Publication Analysis

Top Keywords

resistance
13
pesticide resistance
12
standing variation
12
evolutionary origins
8
novo mutations
8
resistance evolves
8
metabolic resistance
8
pesticide
4
origins pesticide
4
resistance durable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!